JEdward7777
commited on
Commit
·
adcc6fe
1
Parent(s):
2b96148
update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value:
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -29,10 +29,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
29 |
|
30 |
# delivery_truck_classification
|
31 |
|
32 |
-
This model is a fine-tuned version of [
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss: 0.
|
35 |
-
- Accuracy:
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -66,46 +66,46 @@ The following hyperparameters were used during training:
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| No log | 0.86 | 3 |
|
70 |
-
| No log | 1.86 | 6 |
|
71 |
-
| No log | 2.86 | 9 |
|
72 |
-
| No log | 3.86 | 12 |
|
73 |
-
| No log | 4.86 | 15 | 0.
|
74 |
-
| No log | 5.86 | 18 | 0.
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
|
110 |
|
111 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.9591836734693877
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
29 |
|
30 |
# delivery_truck_classification
|
31 |
|
32 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0684
|
35 |
+
- Accuracy: 0.9592
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| No log | 0.86 | 3 | 1.7166 | 0.2245 |
|
70 |
+
| No log | 1.86 | 6 | 1.5816 | 0.4082 |
|
71 |
+
| No log | 2.86 | 9 | 1.4084 | 0.5510 |
|
72 |
+
| No log | 3.86 | 12 | 1.1761 | 0.6327 |
|
73 |
+
| No log | 4.86 | 15 | 0.9245 | 0.7347 |
|
74 |
+
| No log | 5.86 | 18 | 0.6986 | 0.7959 |
|
75 |
+
| 1.608 | 6.86 | 21 | 0.5158 | 0.8367 |
|
76 |
+
| 1.608 | 7.86 | 24 | 0.3753 | 0.8776 |
|
77 |
+
| 1.608 | 8.86 | 27 | 0.3092 | 0.8980 |
|
78 |
+
| 1.608 | 9.86 | 30 | 0.2584 | 0.9388 |
|
79 |
+
| 1.608 | 10.86 | 33 | 0.2159 | 0.9184 |
|
80 |
+
| 1.608 | 11.86 | 36 | 0.1908 | 0.9592 |
|
81 |
+
| 1.608 | 12.86 | 39 | 0.1802 | 0.9592 |
|
82 |
+
| 0.6473 | 13.86 | 42 | 0.1682 | 0.9592 |
|
83 |
+
| 0.6473 | 14.86 | 45 | 0.1560 | 0.9592 |
|
84 |
+
| 0.6473 | 15.86 | 48 | 0.1322 | 0.9592 |
|
85 |
+
| 0.6473 | 16.86 | 51 | 0.1101 | 0.9592 |
|
86 |
+
| 0.6473 | 17.86 | 54 | 0.0938 | 0.9592 |
|
87 |
+
| 0.6473 | 18.86 | 57 | 0.0889 | 0.9796 |
|
88 |
+
| 0.3855 | 19.86 | 60 | 0.1025 | 0.9796 |
|
89 |
+
| 0.3855 | 20.86 | 63 | 0.0984 | 0.9796 |
|
90 |
+
| 0.3855 | 21.86 | 66 | 0.0867 | 0.9592 |
|
91 |
+
| 0.3855 | 22.86 | 69 | 0.0813 | 0.9592 |
|
92 |
+
| 0.3855 | 23.86 | 72 | 0.0768 | 0.9592 |
|
93 |
+
| 0.3855 | 24.86 | 75 | 0.0734 | 0.9796 |
|
94 |
+
| 0.3855 | 25.86 | 78 | 0.0698 | 0.9796 |
|
95 |
+
| 0.306 | 26.86 | 81 | 0.0618 | 0.9592 |
|
96 |
+
| 0.306 | 27.86 | 84 | 0.0547 | 0.9796 |
|
97 |
+
| 0.306 | 28.86 | 87 | 0.0538 | 0.9592 |
|
98 |
+
| 0.306 | 29.86 | 90 | 0.0487 | 0.9796 |
|
99 |
+
| 0.306 | 30.86 | 93 | 0.0447 | 1.0 |
|
100 |
+
| 0.306 | 31.86 | 96 | 0.0425 | 1.0 |
|
101 |
+
| 0.306 | 32.86 | 99 | 0.0451 | 1.0 |
|
102 |
+
| 0.2966 | 33.86 | 102 | 0.0497 | 1.0 |
|
103 |
+
| 0.2966 | 34.86 | 105 | 0.0558 | 1.0 |
|
104 |
+
| 0.2966 | 35.86 | 108 | 0.0582 | 0.9796 |
|
105 |
+
| 0.2966 | 36.86 | 111 | 0.0616 | 0.9592 |
|
106 |
+
| 0.2966 | 37.86 | 114 | 0.0657 | 0.9592 |
|
107 |
+
| 0.2966 | 38.86 | 117 | 0.0679 | 0.9592 |
|
108 |
+
| 0.2535 | 39.86 | 120 | 0.0684 | 0.9592 |
|
109 |
|
110 |
|
111 |
### Framework versions
|