optim = AdamW(model.parameters(), lr=5e-5, eps=1e-8) #tasa de aprendizaje # Se inicializa el cargador de datos para los datos de entrenamiento train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True) for epoch in range(10): {'score': 0.7284889221191406, 'start': 14, 'end': 29, 'answer': 'serology tests,'} Precisión del modelo ajustado: 0.8211654387139986 Epoch 0: 100%|██████████| 94/94 [00:57<00:00, 1.62it/s, loss=1.87] Epoch 1: 100%|██████████| 94/94 [00:57<00:00, 1.62it/s, loss=0.211] Epoch 2: 100%|██████████| 94/94 [00:57<00:00, 1.62it/s, loss=1.95] Epoch 3: 100%|██████████| 94/94 [00:57<00:00, 1.62it/s, loss=0.0322] Epoch 4: 100%|██████████| 94/94 [00:57<00:00, 1.62it/s, loss=0.0229] Epoch 5: 100%|██████████| 94/94 [00:57<00:00, 1.62it/s, loss=0.0271] Epoch 6: 100%|██████████| 94/94 [00:57<00:00, 1.62it/s, loss=0.59] Epoch 7: 100%|██████████| 94/94 [00:57<00:00, 1.62it/s, loss=0.0233] Epoch 8: 100%|██████████| 94/94 [00:57<00:00, 1.62it/s, loss=0.00257] Epoch 9: 100%|██████████| 94/94 [00:57<00:00, 1.62it/s, loss=0.00663]