--- library_name: transformers license: apache-2.0 base_model: Alibaba-NLP/gte-large-en-v1.5 tags: - generated_from_trainer metrics: - f1 model-index: - name: gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-14 results: [] --- # gte-large-en-v1.5-based-ft-prompt-injection-detection-241205Weighted-14 This model is a fine-tuned version of [Alibaba-NLP/gte-large-en-v1.5](https://huggingface.co./Alibaba-NLP/gte-large-en-v1.5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1507 - F1: 0.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:------:|:----:|:---------------:|:------:| | 0.4531 | 0.2527 | 100 | 0.2315 | 0.9007 | | 0.201 | 0.5054 | 200 | 0.1689 | 0.9390 | | 0.1611 | 0.7581 | 300 | 0.1620 | 0.9456 | | 0.152 | 1.0107 | 400 | 0.1230 | 0.9560 | | 0.1046 | 1.2634 | 500 | 0.1297 | 0.9510 | | 0.1138 | 1.5161 | 600 | 0.1385 | 0.9515 | | 0.1212 | 1.7688 | 700 | 0.1365 | 0.9497 | | 0.1203 | 2.0215 | 800 | 0.1339 | 0.9555 | | 0.0946 | 2.2742 | 900 | 0.1253 | 0.9538 | | 0.0974 | 2.5268 | 1000 | 0.1891 | 0.9287 | | 0.1191 | 2.7795 | 1100 | 0.1375 | 0.9531 | | 0.1078 | 3.0322 | 1200 | 0.1806 | 0.9504 | | 0.0751 | 3.2849 | 1300 | 0.1466 | 0.9550 | | 0.0799 | 3.5376 | 1400 | 0.1507 | 0.9470 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3