--- license: apache-2.0 base_model: bert-large-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: bert-large-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.939 - name: F1 type: f1 value: 0.9390844003351607 --- # bert-large-uncased-with-preprocess-finetuned-emotion-5-epochs-5e-05-lr This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co./bert-large-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1591 - Accuracy: 0.939 - F1: 0.9391 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.5175 | 1.0 | 250 | 0.1803 | 0.9285 | 0.9295 | | 0.1551 | 2.0 | 500 | 0.1425 | 0.932 | 0.9321 | | 0.1112 | 3.0 | 750 | 0.1495 | 0.936 | 0.9366 | | 0.0846 | 4.0 | 1000 | 0.1359 | 0.946 | 0.9457 | | 0.0602 | 5.0 | 1250 | 0.1591 | 0.939 | 0.9391 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3