--- language: en license: apache-2.0 library_name: transformers --- # SQFT Fine-tuned Model: sqft-sparsepeft-phi-3-mini-4k-50-cs-heu - Base Model: [IntelLabs/sqft-phi-3-mini-4k-50-base](https://huggingface.co./IntelLabs/sqft-phi-3-mini-4k-50-base) - Sparsity: 50% - Quantization: No - Finetune Method: SQFT + SparsePEFT - Finetune data: [winogrande](https://huggingface.co./datasets/winogrande), [boolq](https://huggingface.co./datasets/google/boolq), [openbookqa](https://huggingface.co./datasets/allenai/openbookqa), [hellaswag](https://huggingface.co./datasets/Rowan/hellaswag), [piqa](https://huggingface.co./datasets/piqa), [ai2_arc](https://huggingface.co./datasets/allenai/ai2_arc) training dataset (83k) - Sub-Adapter: Heuristic ### Evaluation ```bash MODEL_NAME=IntelLabs/sqft-sparsepeft-phi-3-mini-4k-50-cs-heu lm_eval --model hf --model_args pretrained=${MODEL_NAME},add_bos_token=True,trust_remote_code=True --tasks piqa,arc_easy,arc_challenge,hellaswag,openbookqa,boolq,winogrande --batch_size auto:4 ``` Refer to our [repo](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) for the environment information to run this command. ## Model Sources - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) - **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750) ## Citation ```bash @article{munoz2024sqft, title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models}, author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain}, journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)}, year={2024} } ``` ## License Apache-2.0