--- language: en license: apache-2.0 library_name: transformers --- # SQFT Fine-tuned Model: sqft-sparsepeft-mistral-7b-v0.3-60-gsm8k-heu - Base Model: [IntelLabs/sqft-mistral-7b-v0.3-60-base](https://huggingface.co./IntelLabs/sqft-mistral-7b-v0.3-60-base) - Sparsity: 60% - Quantization: No - Finetune Method: SQFT + SparsePEFT - Finetune data: [GSM8K](https://huggingface.co./datasets/openai/gsm8k) - Sub-Adapter: Heuristic ### Evaluation ```bash MODEL_NAME=IntelLabs/sqft-sparsepeft-mistral-7b-v0.3-60-gsm8k-heu lm_eval --model hf --model_args pretrained=${MODEL_NAME},add_bos_token=True,trust_remote_code=True --tasks gsm8k --batch_size auto:4 ``` Refer to our [repo](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) for the environment information to run this command. ## Model Sources - **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT) - **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750) ## Citation ```bash @article{munoz2024sqft, title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models}, author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain}, journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)}, year={2024} } ``` ## License Apache-2.0