File size: 1,443 Bytes
4e4f617
d21eba3
 
4e4f617
 
 
d21eba3
4e4f617
d21eba3
 
 
 
4e4f617
d21eba3
4e4f617
d21eba3
ab76a12
4e4f617
d21eba3
4e4f617
d21eba3
4e4f617
d21eba3
4e4f617
d21eba3
 
 
 
ab76a12
d21eba3
 
 
4e4f617
d21eba3
4e4f617
d21eba3
4e4f617
d21eba3
4e4f617
d21eba3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---
language: en
license: apache-2.0
library_name: transformers
---

# SQFT Base Model: sqft-phi-3-mini-4k-60-base

- Source Model: [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co./microsoft/Phi-3-mini-4k-instruct)
- Sparse Method: [Wanda](https://github.com/locuslab/wanda)
- Sparsity: 60%
- Quantization: No

## Model Sources

- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750)

## How to get this model

Refer to the command in [SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11).

## Citation

```bash
@article{munoz2024sqft,
  title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
  author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
  journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)},
  year={2024}
}
```

## Acknowledgement

Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach.

## License

Apache-2.0