File size: 1,443 Bytes
7753dcc b10c655 7753dcc b10c655 7753dcc b10c655 7753dcc b10c655 7753dcc b10c655 f7f49d4 7753dcc b10c655 7753dcc b10c655 7753dcc b10c655 7753dcc b10c655 f7f49d4 b10c655 7753dcc b10c655 7753dcc b10c655 7753dcc b10c655 7753dcc b10c655 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
language: en
license: apache-2.0
library_name: transformers
---
# SQFT Base Model: sqft-phi-3-mini-4k-40-base
- Source Model: [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co./microsoft/Phi-3-mini-4k-instruct)
- Sparse Method: [Wanda](https://github.com/locuslab/wanda)
- Sparsity: 40%
- Quantization: No
## Model Sources
- **Repository:** [https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT)
- **Paper:** [SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models](https://arxiv.org/abs/2410.03750)
## How to get this model
Refer to the command in [SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11](https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning/tree/main/SQFT/run_command/phi-3-mini-4k-instruct/sparse_quantization.sh#11).
## Citation
```bash
@article{munoz2024sqft,
title = {SQFT: Low-cost Model Adaptation in Low-precision Sparse Foundation Models},
author={J. Pablo Munoz and Jinjie Yuan and Nilesh Jain},
journal={The 2024 Conference on Empirical Methods in Natural Language Processing (Findings)},
year={2024}
}
```
## Acknowledgement
Thanks to the work Wanda ([paper](https://arxiv.org/abs/2306.11695), [code](https://github.com/locuslab/wanda)), which provides a simple but effective pruning approach.
## License
Apache-2.0 |