File size: 3,490 Bytes
8b406b7
f2f8409
 
8b406b7
f2f8409
 
 
 
 
 
 
 
 
 
3dddad9
 
 
 
 
 
 
 
 
d5c98ca
3dddad9
d5c98ca
3dddad9
d5c98ca
 
3dddad9
d5c98ca
3dddad9
d5c98ca
 
3dddad9
d5c98ca
3dddad9
d5c98ca
 
3dddad9
d5c98ca
3dddad9
d5c98ca
 
3dddad9
d5c98ca
3dddad9
d5c98ca
 
3dddad9
d5c98ca
3dddad9
d5c98ca
8b406b7
f2f8409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: roberta-base-mrpc
  results:
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: glue
      type: glue
      config: mrpc
      split: validation
    metrics:
    - type: accuracy
      value: 0.8774509803921569
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzdmODEyMjE4YmRmOTU3M2I1ODE0OWFiNDAzMTdiMDAwNWY5MzA4ZTZkM2IwNTRiZGQ5ZDRiMmEyMGM4ZDFmYyIsInZlcnNpb24iOjF9.w9yMqALfZG7spR6S9DA4JjWcx58TmDcz-58cSWtt7IuPc7XTxD5Ul41oHDsd17MW2hXtysOIMF23VIFmG6s3Bg
    - type: precision
      value: 0.8803986710963455
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTZlNzNhY2NjYjQyYmM5ODgxOGQ2ZGEzOTExNGI1MjU3ZDU5M2E0YzE5ZjRmNDQ0YzMzNWQzMzUzMzkwYjIwNiIsInZlcnNpb24iOjF9.2D7xCmAnHtu3JxhgxmAVS4IUB6QjcN-5VBTga68if0ZQfww_fQ4RrhA6u2QmG06b2e0HLpSb81Ms_BkvQ1GYAA
    - type: recall
      value: 0.9498207885304659
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYTcyZmEzYzA1NDI2OTU2YzM2ZDQwOWYzODc4NDkzOGZhMmM3MjljMzM5NjE0NTQxZDFjNDk2MTBmNzE3ODE2YSIsInZlcnNpb24iOjF9.W5VriUXKqNxLkuG5nZEZ3cIri0-7Jb1omdivO8gZVz8ejKsUUZgh7_Lxlp5dpPiMYcAb_ZFn5VhkvUi3a3v-BA
    - type: auc
      value: 0.9474174099080325
      name: AUC
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWYyNGNlNTYxYTBjODU4Mzc4OGQ1ODEyOTEzMTZmMTJjNDJiOTg3NTM3MjgxNDlkMTU1NDU4ZmEyNmJlNmIxMyIsInZlcnNpb24iOjF9.Ps6oFgV_GVAn6-qVR6ips2V3QPris_tw9P3KjaeAs4R6ZQKpq_gAo60lCOG8l2UFLlDz1rHtiTNI8ErLFRtHAQ
    - type: f1
      value: 0.9137931034482758
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDVmMWUzZmU0OTFlODIzZGQwZTcwMjEyNjc3MzA2MjMzMmZjYWJhYzc3MDBiNjg5ZjE0YTQ3ZjkyZmFmYjBjYiIsInZlcnNpb24iOjF9.IlmOiHR12pik2JktSHBpwpPZOq5CjlFmZD1KlYGnFSZExhCQt_XSFk6pzYaG_ckvO9-H0ktpvpSY0LbD6iSHBQ
    - type: loss
      value: 0.5562044978141785
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzk0ODEyMTEwNDhkYTZmY2JhNTUzMjRmZGJjYmUwZGNkZTNiZDBlMzdmZGM3NTQwNmRjNmE2MTk1NWIwMzFmYSIsInZlcnNpb24iOjF9.W3XQdn-RsmqKYIZJ47y18iYU6FjQp11fpEY8DWkh0RaWyDAK5Jwkwjqir7-LvgRJgMT7ZbaVRY4I2ozEBo_3Bg
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-base-mrpc

This model is a fine-tuned version of [roberta-base](https://huggingface.co./roberta-base) on the GLUE MRPC dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5565
- Accuracy: 0.8775
- F1: 0.9138
- Combined Score: 0.8956

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results



### Framework versions

- Transformers 4.18.0
- Pytorch 1.10.0+cu102
- Datasets 2.1.0
- Tokenizers 0.11.6