--- license: apache-2.0 --- ## Fine-tuning on [Habana](https://habana.ai/) Gaudi2 This model is a fine-tuned model based on [mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) on the open source dataset [Open-Orca/SlimOrca](https://huggingface.co./datasets/Open-Orca/SlimOrca). Then we align it with DPO algorithm. For more details, you can refer our blog: [The Practice of Supervised Fine-tuning and Direct Preference Optimization on Habana Gaudi2](https://medium.com/@NeuralCompressor/the-practice-of-supervised-finetuning-and-direct-preference-optimization-on-habana-gaudi2-a1197d8a3cd3). ## Model date Neural-chat-7b-v3 was trained between September and October, 2023. ## Evaluation We submit our model to [open_llm_leaderboard](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard), and the model performance has been **improved significantly** as we see from the average metric of 7 tasks from the leaderboard. | Model | Average ⬆️| ARC (25-s) ⬆️ | HellaSwag (10-s) ⬆️ | MMLU (5-s) ⬆️| TruthfulQA (MC) (0-s) ⬆️ | Winogrande (5-s) | GSM8K (5-s) | DROP (3-s) | | --- | --- | --- | --- | --- | --- | --- | --- | --- | |[mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) | 50.32 | 59.58 | 83.31 | 64.16 | 42.15 | 78.37 | 18.12 | 6.14 | | **Ours** | **57.31** | 67.15 | 83.29 | 62.26 | 58.77 | 78.06 | 1.21 | 50.43 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-04 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-HPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 2.0 ## Prompt Template ``` ### System: {system} ### User: {usr} ### Assistant: ``` ## FP32 Inference with transformers ```shell from transformers import AutoTokenizer, TextStreamer model_name = "Intel/neural-chat-7b-v3" prompt = "Once upon a time, there existed a little girl," tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) inputs = tokenizer(prompt, return_tensors="pt").input_ids streamer = TextStreamer(tokenizer) model = AutoModelForCausalLM.from_pretrained(model_name) outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300) ) ``` ## INT4 Inference with transformers ```shell from transformers import AutoTokenizer, TextStreamer from intel_extension_for_transformers.transformers import AutoModelForCausalLM, WeightOnlyQuantConfig model_name = "Intel/neural-chat-7b-v3" config = WeightOnlyQuantConfig(compute_dtype="int8", weight_dtype="int4") prompt = "Once upon a time, there existed a little girl," tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) inputs = tokenizer(prompt, return_tensors="pt").input_ids streamer = TextStreamer(tokenizer) model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=config) outputs = model.generate(inputs, streamer=streamer, max_new_tokens=300) ) ``` ## Ethical Considerations and Limitations neural-chat-7b-v3 can produce factually incorrect output, and should not be relied on to produce factually accurate information. neural-chat-7b-v3 was trained on [Open-Orca/SlimOrca](https://huggingface.co./datasets/Open-Orca/SlimOrca) based on [mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1). Because of the limitations of the pretrained model and the finetuning datasets, it is possible that this model could generate lewd, biased or otherwise offensive outputs. Therefore, before deploying any applications of neural-chat-7b-v3, developers should perform safety testing. ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ## Organizations developing the model The NeuralChat team with members from Intel/DCAI/AISE. Core team members: Kaokao Lv, Liang Lv, Chang Wang, Wenxin Zhang, Xuhui Ren, and Haihao Shen. ## Useful links * Intel Neural Compressor [link](https://github.com/intel/neural-compressor) * Intel Extension for Transformers [link](https://github.com/intel/intel-extension-for-transformers) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_Intel__neural-chat-7b-v3) | Metric | Value | |-----------------------|---------------------------| | Avg. | 57.31 | | ARC (25-shot) | 67.15 | | HellaSwag (10-shot) | 83.29 | | MMLU (5-shot) | 62.26 | | TruthfulQA (0-shot) | 58.77 | | Winogrande (5-shot) | 78.06 | | GSM8K (5-shot) | 1.21 | | DROP (3-shot) | 50.43 |