add model.
Browse files- adapt_tokenizer.py +41 -0
- attention.py +276 -0
- blocks.py +41 -0
- config.json +53 -0
- configuration_mpt.py +118 -0
- generation_config.json +6 -0
- hf_prefixlm_converter.py +415 -0
- meta_init_context.py +94 -0
- modeling_mpt.py +290 -0
- norm.py +56 -0
- param_init_fns.py +181 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +9 -0
- test_itex_warm.py +128 -0
- tokenizer.json +0 -0
- tokenizer_config.json +9 -0
- trainer_state.json +3616 -0
- training_args.bin +3 -0
- zero_to_fp32.py +578 -0
adapt_tokenizer.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union
|
2 |
+
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
|
3 |
+
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
4 |
+
NUM_SENTINEL_TOKENS: int = 100
|
5 |
+
|
6 |
+
def adapt_tokenizer_for_denoising(tokenizer: Tokenizer):
|
7 |
+
"""Adds sentinel tokens and padding token (if missing).
|
8 |
+
|
9 |
+
Expands the tokenizer vocabulary to include sentinel tokens
|
10 |
+
used in mixture-of-denoiser tasks as well as a padding token.
|
11 |
+
|
12 |
+
All added tokens are added as special tokens. No tokens are
|
13 |
+
added if sentinel tokens and padding token already exist.
|
14 |
+
"""
|
15 |
+
sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]
|
16 |
+
tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
|
17 |
+
if tokenizer.pad_token is None:
|
18 |
+
tokenizer.add_tokens('<pad>', special_tokens=True)
|
19 |
+
tokenizer.pad_token = '<pad>'
|
20 |
+
assert tokenizer.pad_token_id is not None
|
21 |
+
sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)])
|
22 |
+
_sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
|
23 |
+
tokenizer.sentinel_token_ids = _sentinel_token_ids
|
24 |
+
|
25 |
+
class AutoTokenizerForMOD(AutoTokenizer):
|
26 |
+
"""AutoTokenizer + Adaptation for MOD.
|
27 |
+
|
28 |
+
A simple wrapper around AutoTokenizer to make instantiating
|
29 |
+
an MOD-adapted tokenizer a bit easier.
|
30 |
+
|
31 |
+
MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),
|
32 |
+
a padding token, and a property to get the token ids of the
|
33 |
+
sentinel tokens.
|
34 |
+
"""
|
35 |
+
|
36 |
+
@classmethod
|
37 |
+
def from_pretrained(cls, *args, **kwargs):
|
38 |
+
"""See `AutoTokenizer.from_pretrained` docstring."""
|
39 |
+
tokenizer = super().from_pretrained(*args, **kwargs)
|
40 |
+
adapt_tokenizer_for_denoising(tokenizer)
|
41 |
+
return tokenizer
|
attention.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Attention layers."""
|
2 |
+
import math
|
3 |
+
import warnings
|
4 |
+
from typing import Optional
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from einops import rearrange
|
8 |
+
from torch import nn
|
9 |
+
from .norm import LPLayerNorm
|
10 |
+
|
11 |
+
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
|
12 |
+
if original_is_causal and num_query_tokens != num_key_tokens:
|
13 |
+
if num_query_tokens != 1:
|
14 |
+
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
15 |
+
else:
|
16 |
+
return False
|
17 |
+
return original_is_causal
|
18 |
+
|
19 |
+
def scaled_multihead_dot_product_attention(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
20 |
+
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
21 |
+
k = rearrange(key, 'b s (h d) -> b h d s', h=1 if multiquery else n_heads)
|
22 |
+
v = rearrange(value, 'b s (h d) -> b h s d', h=1 if multiquery else n_heads)
|
23 |
+
min_val = torch.finfo(q.dtype).min
|
24 |
+
(b, _, s_q, d) = q.shape
|
25 |
+
s_k = k.size(-1)
|
26 |
+
if softmax_scale is None:
|
27 |
+
softmax_scale = 1 / math.sqrt(d)
|
28 |
+
attn_weight = q.matmul(k) * softmax_scale
|
29 |
+
if attn_bias is not None:
|
30 |
+
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
|
31 |
+
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
|
32 |
+
attn_weight = attn_weight + attn_bias
|
33 |
+
if key_padding_mask is not None:
|
34 |
+
if attn_bias is not None:
|
35 |
+
warnings.warn('Propogating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
36 |
+
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
37 |
+
if is_causal:
|
38 |
+
s = max(s_q, s_k)
|
39 |
+
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
|
40 |
+
causal_mask = causal_mask.tril()
|
41 |
+
causal_mask = causal_mask.to(torch.bool)
|
42 |
+
causal_mask = ~causal_mask
|
43 |
+
causal_mask = causal_mask[-s_q:, -s_k:]
|
44 |
+
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
|
45 |
+
attn_weight = torch.softmax(attn_weight, dim=-1)
|
46 |
+
if dropout_p:
|
47 |
+
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
|
48 |
+
out = attn_weight.matmul(v)
|
49 |
+
out = rearrange(out, 'b h s d -> b s (h d)')
|
50 |
+
if needs_weights:
|
51 |
+
return (out, attn_weight)
|
52 |
+
return (out, None)
|
53 |
+
|
54 |
+
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
55 |
+
for tensor in tensors:
|
56 |
+
if tensor.dtype not in valid_dtypes:
|
57 |
+
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
58 |
+
if not tensor.is_cuda:
|
59 |
+
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
60 |
+
|
61 |
+
def flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
62 |
+
try:
|
63 |
+
from flash_attn import bert_padding, flash_attn_interface
|
64 |
+
except:
|
65 |
+
raise RuntimeError('Please install flash-attn==1.0.3.post0')
|
66 |
+
check_valid_inputs(query, key, value)
|
67 |
+
if attn_bias is not None:
|
68 |
+
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
69 |
+
(batch_size, seqlen) = query.shape[:2]
|
70 |
+
if key_padding_mask is None:
|
71 |
+
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
|
72 |
+
query_padding_mask = key_padding_mask[:, -query.size(1):]
|
73 |
+
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
|
74 |
+
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
75 |
+
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
|
76 |
+
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
77 |
+
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
|
78 |
+
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
79 |
+
if multiquery:
|
80 |
+
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
81 |
+
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
|
82 |
+
dropout_p = dropout_p if training else 0.0
|
83 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
84 |
+
output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
85 |
+
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
86 |
+
return (output, None)
|
87 |
+
|
88 |
+
def triton_flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
89 |
+
try:
|
90 |
+
from flash_attn import flash_attn_triton
|
91 |
+
except:
|
92 |
+
raise RuntimeError('Please install flash-attn==1.0.3.post0 and triton==2.0.0.dev20221202')
|
93 |
+
check_valid_inputs(query, key, value)
|
94 |
+
if dropout_p:
|
95 |
+
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
96 |
+
if needs_weights:
|
97 |
+
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
98 |
+
if key_padding_mask is not None:
|
99 |
+
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
100 |
+
(b_size, s_k) = key_padding_mask.shape[:2]
|
101 |
+
if attn_bias is None:
|
102 |
+
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
103 |
+
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
|
104 |
+
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
105 |
+
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
106 |
+
value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
107 |
+
if multiquery:
|
108 |
+
key = key.expand(*key.shape[:2], n_heads, key.size(-1))
|
109 |
+
value = value.expand(*value.shape[:2], n_heads, value.size(-1))
|
110 |
+
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
111 |
+
attn_output = flash_attn_triton.flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
112 |
+
output = attn_output.view(*attn_output.shape[:2], -1)
|
113 |
+
return (output, None)
|
114 |
+
|
115 |
+
class MultiheadAttention(nn.Module):
|
116 |
+
"""Multi-head self attention.
|
117 |
+
|
118 |
+
Using torch or triton attention implemetation enables user to also use
|
119 |
+
additive bias.
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
|
123 |
+
super().__init__()
|
124 |
+
self.attn_impl = attn_impl
|
125 |
+
self.clip_qkv = clip_qkv
|
126 |
+
self.qk_ln = qk_ln
|
127 |
+
self.d_model = d_model
|
128 |
+
self.n_heads = n_heads
|
129 |
+
self.softmax_scale = softmax_scale
|
130 |
+
if self.softmax_scale is None:
|
131 |
+
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
132 |
+
self.attn_dropout_p = attn_pdrop
|
133 |
+
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
|
134 |
+
fuse_splits = (d_model, 2 * d_model)
|
135 |
+
self.Wqkv._fused = (0, fuse_splits)
|
136 |
+
if self.qk_ln:
|
137 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
138 |
+
self.q_ln = layernorm_class(self.d_model, device=device)
|
139 |
+
self.k_ln = layernorm_class(self.d_model, device=device)
|
140 |
+
if self.attn_impl == 'flash':
|
141 |
+
self.attn_fn = flash_attn_fn
|
142 |
+
elif self.attn_impl == 'triton':
|
143 |
+
self.attn_fn = triton_flash_attn_fn
|
144 |
+
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
145 |
+
elif self.attn_impl == 'torch':
|
146 |
+
self.attn_fn = scaled_multihead_dot_product_attention
|
147 |
+
if torch.cuda.is_available():
|
148 |
+
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
149 |
+
else:
|
150 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
151 |
+
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
152 |
+
self.out_proj._is_residual = True
|
153 |
+
|
154 |
+
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
155 |
+
qkv = self.Wqkv(x)
|
156 |
+
if self.clip_qkv:
|
157 |
+
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
158 |
+
(query, key, value) = qkv.chunk(3, dim=2)
|
159 |
+
key_padding_mask = attention_mask
|
160 |
+
if self.qk_ln:
|
161 |
+
dtype = query.dtype
|
162 |
+
query = self.q_ln(query).to(dtype)
|
163 |
+
key = self.k_ln(key).to(dtype)
|
164 |
+
if past_key_value is not None:
|
165 |
+
if len(past_key_value) != 0:
|
166 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
167 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
168 |
+
past_key_value = (key, value)
|
169 |
+
if attn_bias is not None:
|
170 |
+
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
171 |
+
(context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
|
172 |
+
return (self.out_proj(context), attn_weights, past_key_value)
|
173 |
+
|
174 |
+
class MultiQueryAttention(nn.Module):
|
175 |
+
"""Multi-Query self attention.
|
176 |
+
|
177 |
+
Using torch or triton attention implemetation enables user to also use
|
178 |
+
additive bias.
|
179 |
+
"""
|
180 |
+
|
181 |
+
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
|
182 |
+
super().__init__()
|
183 |
+
self.attn_impl = attn_impl
|
184 |
+
self.clip_qkv = clip_qkv
|
185 |
+
self.qk_ln = qk_ln
|
186 |
+
self.d_model = d_model
|
187 |
+
self.n_heads = n_heads
|
188 |
+
self.head_dim = d_model // n_heads
|
189 |
+
self.softmax_scale = softmax_scale
|
190 |
+
if self.softmax_scale is None:
|
191 |
+
self.softmax_scale = 1 / math.sqrt(self.head_dim)
|
192 |
+
self.attn_dropout_p = attn_pdrop
|
193 |
+
self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
|
194 |
+
fuse_splits = (d_model, d_model + self.head_dim)
|
195 |
+
self.Wqkv._fused = (0, fuse_splits)
|
196 |
+
if self.qk_ln:
|
197 |
+
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
198 |
+
self.q_ln = layernorm_class(d_model, device=device)
|
199 |
+
self.k_ln = layernorm_class(self.head_dim, device=device)
|
200 |
+
if self.attn_impl == 'flash':
|
201 |
+
self.attn_fn = flash_attn_fn
|
202 |
+
elif self.attn_impl == 'triton':
|
203 |
+
self.attn_fn = triton_flash_attn_fn
|
204 |
+
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
205 |
+
elif self.attn_impl == 'torch':
|
206 |
+
self.attn_fn = scaled_multihead_dot_product_attention
|
207 |
+
if torch.cuda.is_available():
|
208 |
+
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
209 |
+
else:
|
210 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
211 |
+
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
212 |
+
self.out_proj._is_residual = True
|
213 |
+
|
214 |
+
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
215 |
+
qkv = self.Wqkv(x)
|
216 |
+
if self.clip_qkv:
|
217 |
+
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
218 |
+
(query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
|
219 |
+
key_padding_mask = attention_mask
|
220 |
+
if self.qk_ln:
|
221 |
+
dtype = query.dtype
|
222 |
+
query = self.q_ln(query).to(dtype)
|
223 |
+
key = self.k_ln(key).to(dtype)
|
224 |
+
if past_key_value is not None:
|
225 |
+
if len(past_key_value) != 0:
|
226 |
+
key = torch.cat([past_key_value[0], key], dim=1)
|
227 |
+
value = torch.cat([past_key_value[1], value], dim=1)
|
228 |
+
past_key_value = (key, value)
|
229 |
+
if attn_bias is not None:
|
230 |
+
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
231 |
+
(context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True)
|
232 |
+
return (self.out_proj(context), attn_weights, past_key_value)
|
233 |
+
|
234 |
+
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
235 |
+
if attn_impl == 'flash':
|
236 |
+
return None
|
237 |
+
elif attn_impl in ['torch', 'triton']:
|
238 |
+
if alibi:
|
239 |
+
if (prefix_lm or not causal) or use_sequence_id:
|
240 |
+
return (1, n_heads, seq_len, seq_len)
|
241 |
+
return (1, n_heads, 1, seq_len)
|
242 |
+
elif prefix_lm or use_sequence_id:
|
243 |
+
return (1, 1, seq_len, seq_len)
|
244 |
+
return None
|
245 |
+
else:
|
246 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
247 |
+
|
248 |
+
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
|
249 |
+
if attn_impl == 'flash':
|
250 |
+
return None
|
251 |
+
elif attn_impl in ['torch', 'triton']:
|
252 |
+
if alibi:
|
253 |
+
(device, dtype) = (attn_bias.device, attn_bias.dtype)
|
254 |
+
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
|
255 |
+
return attn_bias
|
256 |
+
else:
|
257 |
+
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
258 |
+
|
259 |
+
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
260 |
+
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
261 |
+
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
262 |
+
m = m.mul(alibi_bias_max / _n_heads)
|
263 |
+
slopes = 1.0 / torch.pow(2, m)
|
264 |
+
if _n_heads != n_heads:
|
265 |
+
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
266 |
+
return slopes.view(1, n_heads, 1, 1)
|
267 |
+
|
268 |
+
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
|
269 |
+
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
270 |
+
if full:
|
271 |
+
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
|
272 |
+
alibi_bias = alibi_bias.abs().mul(-1)
|
273 |
+
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
274 |
+
alibi_bias = alibi_bias * slopes
|
275 |
+
return alibi_bias.to(dtype=dtype)
|
276 |
+
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
|
blocks.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""GPT Blocks used for the GPT Model."""
|
2 |
+
from typing import Dict, Optional, Tuple
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from .attention import ATTN_CLASS_REGISTRY
|
6 |
+
from .norm import NORM_CLASS_REGISTRY
|
7 |
+
|
8 |
+
class MPTMLP(nn.Module):
|
9 |
+
|
10 |
+
def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
|
11 |
+
super().__init__()
|
12 |
+
self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device)
|
13 |
+
self.act = nn.GELU(approximate='none')
|
14 |
+
self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device)
|
15 |
+
self.down_proj._is_residual = True
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
return self.down_proj(self.act(self.up_proj(x)))
|
19 |
+
|
20 |
+
class MPTBlock(nn.Module):
|
21 |
+
|
22 |
+
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict={'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', device: Optional[str]=None, **kwargs):
|
23 |
+
del kwargs
|
24 |
+
super().__init__()
|
25 |
+
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
26 |
+
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
|
27 |
+
self.norm_1 = norm_class(d_model, device=device)
|
28 |
+
self.attn = attn_class(attn_impl=attn_config['attn_impl'], clip_qkv=attn_config['clip_qkv'], qk_ln=attn_config['qk_ln'], softmax_scale=attn_config['softmax_scale'], attn_pdrop=attn_config['attn_pdrop'], d_model=d_model, n_heads=n_heads, device=device)
|
29 |
+
self.norm_2 = norm_class(d_model, device=device)
|
30 |
+
self.ffn = MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, device=device)
|
31 |
+
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
32 |
+
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
33 |
+
|
34 |
+
def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
|
35 |
+
a = self.norm_1(x)
|
36 |
+
(b, _, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal)
|
37 |
+
x = x + self.resid_attn_dropout(b)
|
38 |
+
m = self.norm_2(x)
|
39 |
+
n = self.ffn(m)
|
40 |
+
x = x + self.resid_ffn_dropout(n)
|
41 |
+
return (x, past_key_value)
|
config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mosaicml/mpt-7b",
|
3 |
+
"architectures": [
|
4 |
+
"MPTForCausalLM"
|
5 |
+
],
|
6 |
+
"attn_config": {
|
7 |
+
"alibi": true,
|
8 |
+
"alibi_bias_max": 8,
|
9 |
+
"attn_impl": "torch",
|
10 |
+
"attn_pdrop": 0,
|
11 |
+
"attn_type": "multihead_attention",
|
12 |
+
"attn_uses_sequence_id": false,
|
13 |
+
"clip_qkv": null,
|
14 |
+
"prefix_lm": false,
|
15 |
+
"qk_ln": false,
|
16 |
+
"softmax_scale": null
|
17 |
+
},
|
18 |
+
"auto_map": {
|
19 |
+
"AutoConfig": "mosaicml/mpt-7b--configuration_mpt.MPTConfig",
|
20 |
+
"AutoModelForCausalLM": "mosaicml/mpt-7b--modeling_mpt.MPTForCausalLM"
|
21 |
+
},
|
22 |
+
"d_model": 4096,
|
23 |
+
"emb_pdrop": 0,
|
24 |
+
"embedding_fraction": 1.0,
|
25 |
+
"expansion_ratio": 4,
|
26 |
+
"init_config": {
|
27 |
+
"emb_init_std": null,
|
28 |
+
"emb_init_uniform_lim": null,
|
29 |
+
"fan_mode": "fan_in",
|
30 |
+
"init_div_is_residual": true,
|
31 |
+
"init_gain": 0,
|
32 |
+
"init_nonlinearity": "relu",
|
33 |
+
"init_std": 0.02,
|
34 |
+
"name": "kaiming_normal_",
|
35 |
+
"verbose": 0
|
36 |
+
},
|
37 |
+
"init_device": "cpu",
|
38 |
+
"learned_pos_emb": true,
|
39 |
+
"logit_scale": null,
|
40 |
+
"max_seq_len": 2048,
|
41 |
+
"model_type": "mpt",
|
42 |
+
"n_heads": 32,
|
43 |
+
"n_layers": 32,
|
44 |
+
"no_bias": true,
|
45 |
+
"norm_type": "low_precision_layernorm",
|
46 |
+
"resid_pdrop": 0,
|
47 |
+
"tokenizer_name": "EleutherAI/gpt-neox-20b",
|
48 |
+
"torch_dtype": "bfloat16",
|
49 |
+
"transformers_version": "4.30.2",
|
50 |
+
"use_cache": false,
|
51 |
+
"verbose": 0,
|
52 |
+
"vocab_size": 50279
|
53 |
+
}
|
configuration_mpt.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A HuggingFace-style model configuration."""
|
2 |
+
from typing import Dict, Optional, Union
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
|
5 |
+
init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu'}
|
6 |
+
|
7 |
+
class MPTConfig(PretrainedConfig):
|
8 |
+
model_type = 'mpt'
|
9 |
+
|
10 |
+
def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, verbose: int=0, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, **kwargs):
|
11 |
+
"""The MPT configuration class.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
d_model (int): The size of the embedding dimension of the model.
|
15 |
+
n_heads (int): The number of attention heads.
|
16 |
+
n_layers (int): The number of layers in the model.
|
17 |
+
expansion_ratio (int): The ratio of the up/down scale in the MLP.
|
18 |
+
max_seq_len (int): The maximum sequence length of the model.
|
19 |
+
vocab_size (int): The size of the vocabulary.
|
20 |
+
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
21 |
+
emb_pdrop (float): The dropout probability for the embedding layer.
|
22 |
+
learned_pos_emb (bool): Whether to use learned positional embeddings
|
23 |
+
attn_config (Dict): A dictionary used to configure the model's attention module:
|
24 |
+
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention
|
25 |
+
attn_pdrop (float): The dropout probability for the attention layers.
|
26 |
+
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
27 |
+
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
28 |
+
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
29 |
+
this value.
|
30 |
+
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
31 |
+
use the default scale of ``1/sqrt(d_keys)``.
|
32 |
+
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
|
33 |
+
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
|
34 |
+
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
|
35 |
+
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
|
36 |
+
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
37 |
+
which sub-sequence each token belongs to.
|
38 |
+
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
39 |
+
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
40 |
+
alibi_bias_max (int): The maximum value of the alibi bias.
|
41 |
+
init_device (str): The device to use for parameter initialization.
|
42 |
+
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
43 |
+
no_bias (bool): Whether to use bias in all layers.
|
44 |
+
verbose (int): The verbosity level. 0 is silent.
|
45 |
+
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
46 |
+
norm_type (str): choose type of norm to use
|
47 |
+
multiquery_attention (bool): Whether to use multiquery attention implementation.
|
48 |
+
use_cache (bool): Whether or not the model should return the last key/values attentions
|
49 |
+
init_config (Dict): A dictionary used to configure the model initialization:
|
50 |
+
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
|
51 |
+
'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
|
52 |
+
'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
|
53 |
+
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
|
54 |
+
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
|
55 |
+
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
|
56 |
+
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
|
57 |
+
init_std (float): The standard deviation of the normal distribution used to initialize the model,
|
58 |
+
if using the baseline_ parameter initialization scheme.
|
59 |
+
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
|
60 |
+
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
|
61 |
+
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
62 |
+
---
|
63 |
+
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
64 |
+
"""
|
65 |
+
self.d_model = d_model
|
66 |
+
self.n_heads = n_heads
|
67 |
+
self.n_layers = n_layers
|
68 |
+
self.expansion_ratio = expansion_ratio
|
69 |
+
self.max_seq_len = max_seq_len
|
70 |
+
self.vocab_size = vocab_size
|
71 |
+
self.resid_pdrop = resid_pdrop
|
72 |
+
self.emb_pdrop = emb_pdrop
|
73 |
+
self.learned_pos_emb = learned_pos_emb
|
74 |
+
self.attn_config = attn_config
|
75 |
+
self.init_device = init_device
|
76 |
+
self.logit_scale = logit_scale
|
77 |
+
self.no_bias = no_bias
|
78 |
+
self.verbose = verbose
|
79 |
+
self.embedding_fraction = embedding_fraction
|
80 |
+
self.norm_type = norm_type
|
81 |
+
self.use_cache = use_cache
|
82 |
+
self.init_config = init_config
|
83 |
+
if 'name' in kwargs:
|
84 |
+
del kwargs['name']
|
85 |
+
if 'loss_fn' in kwargs:
|
86 |
+
del kwargs['loss_fn']
|
87 |
+
super().__init__(**kwargs)
|
88 |
+
self._validate_config()
|
89 |
+
|
90 |
+
def _set_config_defaults(self, config, config_defaults):
|
91 |
+
for (k, v) in config_defaults.items():
|
92 |
+
if k not in config:
|
93 |
+
config[k] = v
|
94 |
+
return config
|
95 |
+
|
96 |
+
def _validate_config(self):
|
97 |
+
self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
|
98 |
+
self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
|
99 |
+
if self.d_model % self.n_heads != 0:
|
100 |
+
raise ValueError('d_model must be divisible by n_heads')
|
101 |
+
if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
|
102 |
+
raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
|
103 |
+
if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
|
104 |
+
raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
|
105 |
+
if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
106 |
+
raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
|
107 |
+
if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
108 |
+
raise NotImplementedError('alibi only implemented with torch and triton attention.')
|
109 |
+
if self.attn_config['attn_uses_sequence_id'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
110 |
+
raise NotImplementedError('attn_uses_sequence_id only implemented with torch and triton attention.')
|
111 |
+
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
112 |
+
raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
|
113 |
+
if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
|
114 |
+
raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
115 |
+
if self.init_config.get('name', None) is None:
|
116 |
+
raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
|
117 |
+
if not self.learned_pos_emb and (not self.attn_config['alibi']):
|
118 |
+
raise ValueError(f'Positional information must be provided to the model using either learned_pos_emb or alibi.')
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 0,
|
4 |
+
"transformers_version": "4.30.2",
|
5 |
+
"use_cache": false
|
6 |
+
}
|
hf_prefixlm_converter.py
ADDED
@@ -0,0 +1,415 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Converts Huggingface Causal LM to Prefix LM.
|
2 |
+
|
3 |
+
Conversion does lightweight surgery on a HuggingFace
|
4 |
+
Causal LM to convert it to a Prefix LM.
|
5 |
+
|
6 |
+
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
7 |
+
and treat the input prompt as the prefix in `generate`.
|
8 |
+
"""
|
9 |
+
import math
|
10 |
+
import warnings
|
11 |
+
from types import MethodType
|
12 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
13 |
+
import torch
|
14 |
+
from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
|
15 |
+
from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
|
16 |
+
from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
|
17 |
+
from transformers.models.bloom.modeling_bloom import logging
|
18 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
19 |
+
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
|
20 |
+
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
|
21 |
+
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
22 |
+
from transformers.models.opt.modeling_opt import OPTForCausalLM
|
23 |
+
from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
|
24 |
+
from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
_SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
|
27 |
+
CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
|
28 |
+
|
29 |
+
def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
|
30 |
+
"""Converts a GPT-style Causal LM to a Prefix LM.
|
31 |
+
|
32 |
+
Supported HuggingFace model classes:
|
33 |
+
- `GPT2LMHeadModel`
|
34 |
+
- `GPTNeoForCausalLM`
|
35 |
+
- `GPTNeoXForCausalLM`
|
36 |
+
- `GPTJForCausalLM`
|
37 |
+
|
38 |
+
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
39 |
+
"""
|
40 |
+
if hasattr(model, '_prefix_lm_converted'):
|
41 |
+
return model
|
42 |
+
assert isinstance(model, _SUPPORTED_GPT_MODELS)
|
43 |
+
assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models'
|
44 |
+
|
45 |
+
def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
|
46 |
+
"""Helper that gets a list of the model's attention modules.
|
47 |
+
|
48 |
+
Each module has a `bias` buffer used for causal masking. The Prefix LM
|
49 |
+
conversion adds logic to dynamically manipulate these biases to support
|
50 |
+
Prefix LM attention masking.
|
51 |
+
"""
|
52 |
+
attn_modules = []
|
53 |
+
if isinstance(model, GPTNeoXForCausalLM):
|
54 |
+
blocks = model.gpt_neox.layers
|
55 |
+
else:
|
56 |
+
blocks = model.transformer.h
|
57 |
+
for block in blocks:
|
58 |
+
if isinstance(model, GPTNeoForCausalLM):
|
59 |
+
if block.attn.attention_type != 'global':
|
60 |
+
continue
|
61 |
+
attn_module = block.attn.attention
|
62 |
+
elif isinstance(model, GPTNeoXForCausalLM):
|
63 |
+
attn_module = block.attention
|
64 |
+
else:
|
65 |
+
attn_module = block.attn
|
66 |
+
attn_modules.append(attn_module)
|
67 |
+
return attn_modules
|
68 |
+
setattr(model, '_original_forward', getattr(model, 'forward'))
|
69 |
+
setattr(model, '_original_generate', getattr(model, 'generate'))
|
70 |
+
|
71 |
+
def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
|
72 |
+
"""Wraps original forward to enable PrefixLM attention."""
|
73 |
+
|
74 |
+
def call_og_forward():
|
75 |
+
if isinstance(self, GPTNeoXForCausalLM):
|
76 |
+
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
77 |
+
else:
|
78 |
+
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
79 |
+
if bidirectional_mask is None:
|
80 |
+
return call_og_forward()
|
81 |
+
assert isinstance(bidirectional_mask, torch.Tensor)
|
82 |
+
attn_modules = _get_attn_modules(model)
|
83 |
+
(b, s) = bidirectional_mask.shape
|
84 |
+
max_length = attn_modules[0].bias.shape[-1]
|
85 |
+
if s > max_length:
|
86 |
+
raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).')
|
87 |
+
assert s <= max_length
|
88 |
+
if s < max_length:
|
89 |
+
pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device)
|
90 |
+
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
91 |
+
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
92 |
+
for attn_module in attn_modules:
|
93 |
+
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
|
94 |
+
output = call_og_forward()
|
95 |
+
for attn_module in attn_modules:
|
96 |
+
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
97 |
+
return output
|
98 |
+
|
99 |
+
def generate(self: CAUSAL_GPT_TYPES, *args: tuple, **kwargs: Dict[str, Any]):
|
100 |
+
"""Wraps original generate to enable PrefixLM attention."""
|
101 |
+
attn_modules = _get_attn_modules(model)
|
102 |
+
for attn_module in attn_modules:
|
103 |
+
attn_module.bias.data[:] = 1
|
104 |
+
output = self._original_generate(*args, **kwargs)
|
105 |
+
for attn_module in attn_modules:
|
106 |
+
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
107 |
+
return output
|
108 |
+
setattr(model, 'forward', MethodType(forward, model))
|
109 |
+
setattr(model, 'generate', MethodType(generate, model))
|
110 |
+
setattr(model, '_prefix_lm_converted', True)
|
111 |
+
return model
|
112 |
+
|
113 |
+
def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM:
|
114 |
+
"""Converts a BLOOM Causal LM to a Prefix LM.
|
115 |
+
|
116 |
+
Supported HuggingFace model classes:
|
117 |
+
- `BloomForCausalLM`
|
118 |
+
|
119 |
+
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
120 |
+
"""
|
121 |
+
if hasattr(model, '_prefix_lm_converted'):
|
122 |
+
return model
|
123 |
+
assert isinstance(model, BloomForCausalLM)
|
124 |
+
assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models'
|
125 |
+
|
126 |
+
def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor:
|
127 |
+
combined_attention_mask = None
|
128 |
+
device = attention_mask.device
|
129 |
+
(_, src_length) = input_shape
|
130 |
+
if src_length > 1:
|
131 |
+
combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length)
|
132 |
+
if bidirectional_mask is not None:
|
133 |
+
assert attention_mask.shape == bidirectional_mask.shape
|
134 |
+
expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length)
|
135 |
+
combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask)
|
136 |
+
expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length)
|
137 |
+
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
138 |
+
return combined_attention_mask
|
139 |
+
|
140 |
+
def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
|
141 |
+
num_heads = self.config.n_head
|
142 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
143 |
+
base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
144 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32)
|
145 |
+
slopes = torch.pow(base, powers)
|
146 |
+
if closest_power_of_2 != num_heads:
|
147 |
+
extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
148 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
149 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32)
|
150 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
151 |
+
qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1)
|
152 |
+
ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1)
|
153 |
+
diffs = qa - ka + key_length - query_length
|
154 |
+
diffs = -diffs.abs()
|
155 |
+
alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length)
|
156 |
+
alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length)
|
157 |
+
return alibi.to(dtype)
|
158 |
+
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
159 |
+
|
160 |
+
def forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
161 |
+
if deprecated_arguments.pop('position_ids', False) is not False:
|
162 |
+
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
|
163 |
+
if len(deprecated_arguments) > 0:
|
164 |
+
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
165 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
166 |
+
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
167 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
168 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
169 |
+
if input_ids is not None and inputs_embeds is not None:
|
170 |
+
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
171 |
+
elif input_ids is not None:
|
172 |
+
(batch_size, seq_length) = input_ids.shape
|
173 |
+
elif inputs_embeds is not None:
|
174 |
+
(batch_size, seq_length, _) = inputs_embeds.shape
|
175 |
+
else:
|
176 |
+
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
177 |
+
if past_key_values is None:
|
178 |
+
past_key_values = tuple([None] * len(self.h))
|
179 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
180 |
+
if inputs_embeds is None:
|
181 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
182 |
+
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
183 |
+
presents = () if use_cache else None
|
184 |
+
all_self_attentions = () if output_attentions else None
|
185 |
+
all_hidden_states = () if output_hidden_states else None
|
186 |
+
seq_length_with_past = seq_length
|
187 |
+
past_key_values_length = 0
|
188 |
+
if past_key_values[0] is not None:
|
189 |
+
tmp = past_key_values[0][0]
|
190 |
+
past_key_values_length = tmp.shape[2]
|
191 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
192 |
+
if attention_mask is None:
|
193 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
194 |
+
else:
|
195 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
196 |
+
alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device)
|
197 |
+
causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length)
|
198 |
+
for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)):
|
199 |
+
if output_hidden_states:
|
200 |
+
hst = (hidden_states,)
|
201 |
+
all_hidden_states = all_hidden_states + hst
|
202 |
+
if self.gradient_checkpointing and self.training:
|
203 |
+
if use_cache:
|
204 |
+
logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
|
205 |
+
use_cache = False
|
206 |
+
|
207 |
+
def create_custom_forward(module):
|
208 |
+
|
209 |
+
def custom_forward(*inputs):
|
210 |
+
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
211 |
+
return custom_forward
|
212 |
+
outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
|
213 |
+
else:
|
214 |
+
outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi)
|
215 |
+
hidden_states = outputs[0]
|
216 |
+
if use_cache is True:
|
217 |
+
presents = presents + (outputs[1],)
|
218 |
+
if output_attentions:
|
219 |
+
oa = (outputs[2 if use_cache else 1],)
|
220 |
+
all_self_attentions = all_self_attentions + oa
|
221 |
+
hidden_states = self.ln_f(hidden_states)
|
222 |
+
if output_hidden_states:
|
223 |
+
hst = (hidden_states,)
|
224 |
+
all_hidden_states = all_hidden_states + hst
|
225 |
+
if not return_dict:
|
226 |
+
return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None))
|
227 |
+
return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
|
228 |
+
setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
|
229 |
+
setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
|
230 |
+
setattr(model.transformer, 'forward', MethodType(forward, model.transformer))
|
231 |
+
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
232 |
+
|
233 |
+
def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
234 |
+
"""Replacement forward method for BloomCausalLM."""
|
235 |
+
if deprecated_arguments.pop('position_ids', False) is not False:
|
236 |
+
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
|
237 |
+
if len(deprecated_arguments) > 0:
|
238 |
+
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
239 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
240 |
+
transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
241 |
+
hidden_states = transformer_outputs[0]
|
242 |
+
lm_logits = self.lm_head(hidden_states)
|
243 |
+
loss = None
|
244 |
+
if labels is not None:
|
245 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
246 |
+
shift_labels = labels[..., 1:].contiguous()
|
247 |
+
(batch_size, seq_length, vocab_size) = shift_logits.shape
|
248 |
+
loss_fct = CrossEntropyLoss()
|
249 |
+
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length))
|
250 |
+
if not return_dict:
|
251 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
252 |
+
return (loss,) + output if loss is not None else output
|
253 |
+
return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
|
254 |
+
|
255 |
+
def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict:
|
256 |
+
if past:
|
257 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
258 |
+
bidirectional_mask = None
|
259 |
+
if past[0][0].shape[0] == input_ids.shape[0]:
|
260 |
+
past = self._convert_to_bloom_cache(past)
|
261 |
+
else:
|
262 |
+
bidirectional_mask = torch.ones_like(input_ids)
|
263 |
+
return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask}
|
264 |
+
setattr(model, 'forward', MethodType(forward, model))
|
265 |
+
setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model))
|
266 |
+
setattr(model, '_prefix_lm_converted', True)
|
267 |
+
return model
|
268 |
+
|
269 |
+
def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
|
270 |
+
"""Converts an OPT Causal LM to a Prefix LM.
|
271 |
+
|
272 |
+
Supported HuggingFace model classes:
|
273 |
+
- `OPTForCausalLM`
|
274 |
+
|
275 |
+
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
276 |
+
"""
|
277 |
+
if hasattr(model, '_prefix_lm_converted'):
|
278 |
+
return model
|
279 |
+
assert isinstance(model, OPTForCausalLM)
|
280 |
+
assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models'
|
281 |
+
setattr(model, '_original_forward', getattr(model, 'forward'))
|
282 |
+
setattr(model, '_original_generate', getattr(model, 'generate'))
|
283 |
+
model.model.decoder.bidirectional_mask = None
|
284 |
+
|
285 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
286 |
+
combined_attention_mask = None
|
287 |
+
if input_shape[-1] > 1:
|
288 |
+
if self.bidirectional_mask == 'g':
|
289 |
+
(bsz, src_length) = input_shape
|
290 |
+
combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
291 |
+
else:
|
292 |
+
combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
|
293 |
+
if self.bidirectional_mask is not None:
|
294 |
+
assert attention_mask.shape == self.bidirectional_mask.shape
|
295 |
+
expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
296 |
+
combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
|
297 |
+
if attention_mask is not None:
|
298 |
+
expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
299 |
+
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
300 |
+
return combined_attention_mask
|
301 |
+
setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder))
|
302 |
+
|
303 |
+
def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
|
304 |
+
|
305 |
+
def call_og_forward():
|
306 |
+
return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
307 |
+
if bidirectional_mask is None:
|
308 |
+
return call_og_forward()
|
309 |
+
self.model.decoder.bidirectional_mask = bidirectional_mask
|
310 |
+
try:
|
311 |
+
outputs = call_og_forward()
|
312 |
+
except:
|
313 |
+
self.model.decoder.bidirectional_mask = None
|
314 |
+
raise
|
315 |
+
self.model.decoder.bidirectional_mask = None
|
316 |
+
return outputs
|
317 |
+
|
318 |
+
def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]):
|
319 |
+
"""Wraps original generate to enable PrefixLM-style attention."""
|
320 |
+
self.model.decoder.bidirectional_mask = 'g'
|
321 |
+
try:
|
322 |
+
output = self._original_generate(*args, **kwargs)
|
323 |
+
except:
|
324 |
+
self.model.decoder.bidirectional_mask = None
|
325 |
+
raise
|
326 |
+
self.model.decoder.bidirectional_mask = None
|
327 |
+
return output
|
328 |
+
setattr(model, 'forward', MethodType(forward, model))
|
329 |
+
setattr(model, 'generate', MethodType(generate, model))
|
330 |
+
setattr(model, '_prefix_lm_converted', True)
|
331 |
+
return model
|
332 |
+
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM)
|
333 |
+
CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM]
|
334 |
+
|
335 |
+
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
|
336 |
+
"""Converts a HuggingFace Causal LM to a Prefix LM.
|
337 |
+
|
338 |
+
Supported HuggingFace model classes:
|
339 |
+
- `GPT2LMHeadModel`
|
340 |
+
- `GPTNeoForCausalLM`
|
341 |
+
- `GPTNeoXForCausalLM`
|
342 |
+
- `GPTJForCausalLM`
|
343 |
+
- `BloomForCausalLM`
|
344 |
+
- `OPTForCausalLM`
|
345 |
+
|
346 |
+
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
|
347 |
+
`generate` method and/or select underlying methods depending on the model class.
|
348 |
+
|
349 |
+
These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".
|
350 |
+
|
351 |
+
Notes on training:
|
352 |
+
To actually train the converted model as a Prefix LM, training batches will need to indicate
|
353 |
+
the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.
|
354 |
+
|
355 |
+
**This is not a standard input and requires custom layers either within or after your dataloader.**
|
356 |
+
|
357 |
+
In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
|
358 |
+
such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
|
359 |
+
That is, the prefix portion of the sequence should not generate any loss. Loss should only be
|
360 |
+
generated by the target portion of the sequence.
|
361 |
+
|
362 |
+
Notes on `GPTNeoForCausalLM`:
|
363 |
+
To simplify the implementation, "global" and "local" attention layers are handled differently.
|
364 |
+
For "global" layers, we handle conversion as described above. For "local" layers, which use a
|
365 |
+
causal attention mask within a restricted local window, we do not alter the masking.
|
366 |
+
|
367 |
+
Notes on `forward` method conversion:
|
368 |
+
After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
|
369 |
+
which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
|
370 |
+
belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
|
371 |
+
0 indicates token positions belonging to the target.
|
372 |
+
|
373 |
+
The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
|
374 |
+
causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
|
375 |
+
the causal masks before returning the result.
|
376 |
+
|
377 |
+
Notes on `generate` method conversion:
|
378 |
+
After conversion, the `generate` method will have the same signature but will internally
|
379 |
+
convert all causal masks to be purely bidirectional, call the original `generate` method, and
|
380 |
+
(where appropriate) reset the causal masks before returning the result.
|
381 |
+
|
382 |
+
This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
|
383 |
+
"prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
|
384 |
+
each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
|
385 |
+
another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
|
386 |
+
previously-generated tokens (also as expected in a Prefix LM).
|
387 |
+
|
388 |
+
To preserve the API, the original methods are renamed to `_original_forward` and
|
389 |
+
`_original_generate`, and replaced with new `forward` and `generate` methods that wrap
|
390 |
+
them, respectively. Although implementation details vary by model class.
|
391 |
+
"""
|
392 |
+
if isinstance(model, _SUPPORTED_GPT_MODELS):
|
393 |
+
return _convert_gpt_causal_lm_to_prefix_lm(model)
|
394 |
+
elif isinstance(model, BloomForCausalLM):
|
395 |
+
return _convert_bloom_causal_lm_to_prefix_lm(model)
|
396 |
+
elif isinstance(model, OPTForCausalLM):
|
397 |
+
return _convert_opt_causal_lm_to_prefix_lm(model)
|
398 |
+
else:
|
399 |
+
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
|
400 |
+
|
401 |
+
def add_bidirectional_mask_if_missing(batch: Dict[str, Any]):
|
402 |
+
"""Attempts to add bidirectional_mask to batch if missing.
|
403 |
+
|
404 |
+
Raises:
|
405 |
+
KeyError if bidirectional_mask is missing and can't be inferred
|
406 |
+
"""
|
407 |
+
if 'bidirectional_mask' not in batch:
|
408 |
+
if batch.get('mode', None) == 'icl_task':
|
409 |
+
batch['bidirectional_mask'] = batch['attention_mask'].clone()
|
410 |
+
for (i, continuation_indices) in enumerate(batch['continuation_indices']):
|
411 |
+
batch['bidirectional_mask'][i, continuation_indices] = 0
|
412 |
+
elif 'labels' in batch and 'attention_mask' in batch:
|
413 |
+
batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask'])
|
414 |
+
else:
|
415 |
+
raise KeyError('No bidirectional_mask in batch and not sure how to construct one.')
|
meta_init_context.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import contextmanager
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
@contextmanager
|
6 |
+
def init_empty_weights(include_buffers: bool=False):
|
7 |
+
"""Meta initialization context manager.
|
8 |
+
|
9 |
+
A context manager under which models are initialized with all parameters
|
10 |
+
on the meta device, therefore creating an empty model. Useful when just
|
11 |
+
initializing the model would blow the available RAM.
|
12 |
+
|
13 |
+
Args:
|
14 |
+
include_buffers (`bool`, *optional*, defaults to `False`): Whether or
|
15 |
+
not to also put all buffers on the meta device while initializing.
|
16 |
+
|
17 |
+
Example:
|
18 |
+
```python
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
# Initialize a model with 100 billions parameters in no time and without using any RAM.
|
22 |
+
with init_empty_weights():
|
23 |
+
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
|
24 |
+
```
|
25 |
+
|
26 |
+
<Tip warning={true}>
|
27 |
+
|
28 |
+
Any model created under this context manager has no weights. As such you can't do something like
|
29 |
+
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
|
30 |
+
|
31 |
+
</Tip>
|
32 |
+
"""
|
33 |
+
with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f:
|
34 |
+
yield f
|
35 |
+
|
36 |
+
@contextmanager
|
37 |
+
def init_on_device(device: torch.device, include_buffers: bool=False):
|
38 |
+
"""Device initialization context manager.
|
39 |
+
|
40 |
+
A context manager under which models are initialized with all parameters
|
41 |
+
on the specified device.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
device (`torch.device`): Device to initialize all parameters on.
|
45 |
+
include_buffers (`bool`, *optional*, defaults to `False`): Whether or
|
46 |
+
not to also put all buffers on the meta device while initializing.
|
47 |
+
|
48 |
+
Example:
|
49 |
+
```python
|
50 |
+
import torch.nn as nn
|
51 |
+
|
52 |
+
with init_on_device(device=torch.device("cuda")):
|
53 |
+
tst = nn.Liner(100, 100) # on `cuda` device
|
54 |
+
```
|
55 |
+
"""
|
56 |
+
old_register_parameter = nn.Module.register_parameter
|
57 |
+
if include_buffers:
|
58 |
+
old_register_buffer = nn.Module.register_buffer
|
59 |
+
|
60 |
+
def register_empty_parameter(module, name, param):
|
61 |
+
old_register_parameter(module, name, param)
|
62 |
+
if param is not None:
|
63 |
+
param_cls = type(module._parameters[name])
|
64 |
+
kwargs = module._parameters[name].__dict__
|
65 |
+
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
|
66 |
+
|
67 |
+
def register_empty_buffer(module, name, buffer):
|
68 |
+
old_register_buffer(module, name, buffer)
|
69 |
+
if buffer is not None:
|
70 |
+
module._buffers[name] = module._buffers[name].to(device)
|
71 |
+
if include_buffers:
|
72 |
+
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
|
73 |
+
else:
|
74 |
+
tensor_constructors_to_patch = {}
|
75 |
+
|
76 |
+
def patch_tensor_constructor(fn):
|
77 |
+
|
78 |
+
def wrapper(*args, **kwargs):
|
79 |
+
kwargs['device'] = device
|
80 |
+
return fn(*args, **kwargs)
|
81 |
+
return wrapper
|
82 |
+
try:
|
83 |
+
nn.Module.register_parameter = register_empty_parameter
|
84 |
+
if include_buffers:
|
85 |
+
nn.Module.register_buffer = register_empty_buffer
|
86 |
+
for torch_function_name in tensor_constructors_to_patch.keys():
|
87 |
+
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
|
88 |
+
yield
|
89 |
+
finally:
|
90 |
+
nn.Module.register_parameter = old_register_parameter
|
91 |
+
if include_buffers:
|
92 |
+
nn.Module.register_buffer = old_register_buffer
|
93 |
+
for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items():
|
94 |
+
setattr(torch, torch_function_name, old_torch_function)
|
modeling_mpt.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A simple, flexible implementation of a GPT model.
|
2 |
+
|
3 |
+
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
4 |
+
"""
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
|
12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
13 |
+
from .attention import attn_bias_shape, build_attn_bias
|
14 |
+
from .blocks import MPTBlock
|
15 |
+
from .norm import NORM_CLASS_REGISTRY
|
16 |
+
from .configuration_mpt import MPTConfig
|
17 |
+
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
18 |
+
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
19 |
+
from .meta_init_context import init_empty_weights
|
20 |
+
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
|
21 |
+
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
22 |
+
|
23 |
+
class MPTPreTrainedModel(PreTrainedModel):
|
24 |
+
config_class = MPTConfig
|
25 |
+
base_model_prefix = 'model'
|
26 |
+
|
27 |
+
class MPTModel(MPTPreTrainedModel):
|
28 |
+
|
29 |
+
def __init__(self, config: MPTConfig):
|
30 |
+
config._validate_config()
|
31 |
+
super().__init__(config)
|
32 |
+
self.attn_impl = config.attn_config['attn_impl']
|
33 |
+
self.prefix_lm = config.attn_config['prefix_lm']
|
34 |
+
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
35 |
+
self.alibi = config.attn_config['alibi']
|
36 |
+
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
37 |
+
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
38 |
+
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
39 |
+
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
40 |
+
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
41 |
+
self.embedding_fraction = config.embedding_fraction
|
42 |
+
self.wte = nn.Embedding(config.vocab_size, config.d_model, device=config.init_device)
|
43 |
+
if not self.alibi:
|
44 |
+
self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
45 |
+
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
46 |
+
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
47 |
+
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
48 |
+
if config.init_device != 'meta':
|
49 |
+
self.apply(self.param_init_fn)
|
50 |
+
self.is_causal = not self.prefix_lm
|
51 |
+
self._attn_bias_initialized = False
|
52 |
+
self.attn_bias = None
|
53 |
+
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
|
54 |
+
if config.no_bias:
|
55 |
+
for module in self.modules():
|
56 |
+
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
57 |
+
if config.verbose:
|
58 |
+
warnings.warn(f'Removing bias ({module.bias}) from {module}.')
|
59 |
+
module.register_parameter('bias', None)
|
60 |
+
if config.verbose and config.verbose > 2:
|
61 |
+
print(self)
|
62 |
+
if 'verbose' not in self.config.init_config:
|
63 |
+
self.config.init_config['verbose'] = self.config.verbose
|
64 |
+
if self.config.init_config['verbose'] > 1:
|
65 |
+
init_fn_name = self.config.init_config['name']
|
66 |
+
warnings.warn(f'Using {init_fn_name} initialization.')
|
67 |
+
|
68 |
+
def get_input_embeddings(self):
|
69 |
+
return self.wte
|
70 |
+
|
71 |
+
def set_input_embeddings(self, value):
|
72 |
+
self.wte = value
|
73 |
+
|
74 |
+
@torch.no_grad()
|
75 |
+
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
|
76 |
+
if not self._attn_bias_initialized:
|
77 |
+
if self.attn_bias_shape:
|
78 |
+
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
79 |
+
self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
|
80 |
+
self._attn_bias_initialized = True
|
81 |
+
if self.attn_impl == 'flash':
|
82 |
+
return (self.attn_bias, attention_mask)
|
83 |
+
if self.attn_bias is not None:
|
84 |
+
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
|
85 |
+
attn_bias = self.attn_bias
|
86 |
+
if self.prefix_lm:
|
87 |
+
assert isinstance(attn_bias, torch.Tensor)
|
88 |
+
assert isinstance(prefix_mask, torch.Tensor)
|
89 |
+
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
90 |
+
if self.attn_uses_sequence_id and sequence_id is not None:
|
91 |
+
assert isinstance(attn_bias, torch.Tensor)
|
92 |
+
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
|
93 |
+
if attention_mask is not None:
|
94 |
+
s_k = attention_mask.shape[-1]
|
95 |
+
if attn_bias is None:
|
96 |
+
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
97 |
+
else:
|
98 |
+
attn_bias = attn_bias[:, :, :, -s_k:]
|
99 |
+
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
100 |
+
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
101 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
102 |
+
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
103 |
+
return (attn_bias, None)
|
104 |
+
|
105 |
+
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
|
106 |
+
(s_k, s_q) = attn_bias.shape[-2:]
|
107 |
+
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
108 |
+
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
109 |
+
seq_len = prefix_mask.shape[-1]
|
110 |
+
if seq_len > self.config.max_seq_len:
|
111 |
+
raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
112 |
+
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
113 |
+
causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
|
114 |
+
prefix = prefix_mask.view(-1, 1, 1, seq_len)
|
115 |
+
cannot_attend = ~torch.logical_or(causal, prefix.bool())
|
116 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
117 |
+
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
118 |
+
return attn_bias
|
119 |
+
|
120 |
+
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
|
121 |
+
seq_len = sequence_id.shape[-1]
|
122 |
+
if seq_len > self.config.max_seq_len:
|
123 |
+
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
124 |
+
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
125 |
+
cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
|
126 |
+
min_val = torch.finfo(attn_bias.dtype).min
|
127 |
+
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
128 |
+
return attn_bias
|
129 |
+
|
130 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
131 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
132 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
133 |
+
if attention_mask is not None:
|
134 |
+
attention_mask = attention_mask.bool()
|
135 |
+
if prefix_mask is not None:
|
136 |
+
prefix_mask = prefix_mask.bool()
|
137 |
+
if not return_dict:
|
138 |
+
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
139 |
+
if output_attentions:
|
140 |
+
raise NotImplementedError('output_attentions is not implemented yet for MPT')
|
141 |
+
if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
|
142 |
+
raise NotImplementedError('MPT does not support training with left padding.')
|
143 |
+
if self.prefix_lm and prefix_mask is None:
|
144 |
+
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
145 |
+
if self.training:
|
146 |
+
if self.attn_uses_sequence_id and sequence_id is None:
|
147 |
+
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
148 |
+
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
149 |
+
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
150 |
+
S = input_ids.size(1)
|
151 |
+
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
152 |
+
tok_emb = self.wte(input_ids)
|
153 |
+
if self.alibi:
|
154 |
+
x = tok_emb
|
155 |
+
else:
|
156 |
+
past_position = 0
|
157 |
+
if past_key_values is not None:
|
158 |
+
if len(past_key_values) != self.config.n_layers:
|
159 |
+
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
160 |
+
past_position = past_key_values[0][0].size(1)
|
161 |
+
if S + past_position > self.config.max_seq_len:
|
162 |
+
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
163 |
+
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
164 |
+
if attention_mask is not None:
|
165 |
+
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
166 |
+
pos_emb = self.wpe(pos)
|
167 |
+
x = tok_emb + pos_emb
|
168 |
+
if self.embedding_fraction == 1:
|
169 |
+
x = self.emb_drop(x)
|
170 |
+
else:
|
171 |
+
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
172 |
+
assert isinstance(self.emb_drop, nn.Module)
|
173 |
+
x = self.emb_drop(x_shrunk)
|
174 |
+
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=x.dtype, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
175 |
+
if use_cache and past_key_values is None:
|
176 |
+
past_key_values = [() for _ in range(self.config.n_layers)]
|
177 |
+
all_hidden_states = () if output_hidden_states else None
|
178 |
+
for (b_idx, block) in enumerate(self.blocks):
|
179 |
+
if output_hidden_states:
|
180 |
+
assert all_hidden_states is not None
|
181 |
+
all_hidden_states = all_hidden_states + (x,)
|
182 |
+
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
183 |
+
(x, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
|
184 |
+
if past_key_values is not None:
|
185 |
+
past_key_values[b_idx] = past_key_value
|
186 |
+
x = self.norm_f(x)
|
187 |
+
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states)
|
188 |
+
|
189 |
+
def param_init_fn(self, module):
|
190 |
+
init_fn_name = self.config.init_config['name']
|
191 |
+
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
192 |
+
|
193 |
+
def fsdp_wrap_fn(self, module):
|
194 |
+
return isinstance(module, MPTBlock)
|
195 |
+
|
196 |
+
def activation_checkpointing_fn(self, module):
|
197 |
+
return isinstance(module, MPTBlock)
|
198 |
+
|
199 |
+
class MPTForCausalLM(MPTPreTrainedModel):
|
200 |
+
|
201 |
+
def __init__(self, config: MPTConfig):
|
202 |
+
super().__init__(config)
|
203 |
+
if not config.tie_word_embeddings:
|
204 |
+
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
205 |
+
self.transformer = MPTModel(config)
|
206 |
+
self.logit_scale = None
|
207 |
+
if config.logit_scale is not None:
|
208 |
+
logit_scale = config.logit_scale
|
209 |
+
if isinstance(logit_scale, str):
|
210 |
+
if logit_scale == 'inv_sqrt_d_model':
|
211 |
+
logit_scale = 1 / math.sqrt(config.d_model)
|
212 |
+
else:
|
213 |
+
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
214 |
+
self.logit_scale = logit_scale
|
215 |
+
|
216 |
+
def get_input_embeddings(self):
|
217 |
+
return self.transformer.wte
|
218 |
+
|
219 |
+
def set_input_embeddings(self, value):
|
220 |
+
self.transformer.wte = value
|
221 |
+
|
222 |
+
def get_output_embeddings(self):
|
223 |
+
return self.transformer.wte
|
224 |
+
|
225 |
+
def set_output_embeddings(self, new_embeddings):
|
226 |
+
self.transformer.wte = new_embeddings
|
227 |
+
|
228 |
+
def set_decoder(self, decoder):
|
229 |
+
self.transformer = decoder
|
230 |
+
|
231 |
+
def get_decoder(self):
|
232 |
+
return self.transformer
|
233 |
+
|
234 |
+
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
235 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
236 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
237 |
+
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
238 |
+
logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight)
|
239 |
+
if self.logit_scale is not None:
|
240 |
+
if self.logit_scale == 0:
|
241 |
+
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
242 |
+
logits *= self.logit_scale
|
243 |
+
loss = None
|
244 |
+
if labels is not None:
|
245 |
+
labels = torch.roll(labels, shifts=-1)
|
246 |
+
labels[:, -1] = -100
|
247 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
|
248 |
+
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states)
|
249 |
+
|
250 |
+
def param_init_fn(self, module):
|
251 |
+
init_fn_name = self.config.init_config['name']
|
252 |
+
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
253 |
+
|
254 |
+
def fsdp_wrap_fn(self, module):
|
255 |
+
return isinstance(module, MPTBlock)
|
256 |
+
|
257 |
+
def activation_checkpointing_fn(self, module):
|
258 |
+
return isinstance(module, MPTBlock)
|
259 |
+
|
260 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
261 |
+
if inputs_embeds is not None:
|
262 |
+
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
263 |
+
attention_mask = kwargs['attention_mask'].bool()
|
264 |
+
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
265 |
+
raise NotImplementedError('MPT does not support generation with right padding.')
|
266 |
+
if self.transformer.attn_uses_sequence_id and self.training:
|
267 |
+
sequence_id = torch.zeros_like(input_ids[:1])
|
268 |
+
else:
|
269 |
+
sequence_id = None
|
270 |
+
if past_key_values is not None:
|
271 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
272 |
+
if self.transformer.prefix_lm:
|
273 |
+
prefix_mask = torch.ones_like(attention_mask)
|
274 |
+
if kwargs.get('use_cache') == False:
|
275 |
+
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
276 |
+
else:
|
277 |
+
prefix_mask = None
|
278 |
+
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
|
279 |
+
|
280 |
+
@staticmethod
|
281 |
+
def _reorder_cache(past_key_values, beam_idx):
|
282 |
+
"""Used by HuggingFace generate when using beam search with kv-caching.
|
283 |
+
|
284 |
+
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
285 |
+
for an example in transformers.
|
286 |
+
"""
|
287 |
+
reordered_past = []
|
288 |
+
for layer_past in past_key_values:
|
289 |
+
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
|
290 |
+
return reordered_past
|
norm.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
def _cast_if_autocast_enabled(tensor):
|
4 |
+
if torch.is_autocast_enabled():
|
5 |
+
if tensor.device.type == 'cuda':
|
6 |
+
dtype = torch.get_autocast_gpu_dtype()
|
7 |
+
elif tensor.device.type == 'cpu':
|
8 |
+
dtype = torch.get_autocast_cpu_dtype()
|
9 |
+
else:
|
10 |
+
raise NotImplementedError()
|
11 |
+
return tensor.to(dtype=dtype)
|
12 |
+
return tensor
|
13 |
+
|
14 |
+
class LPLayerNorm(torch.nn.LayerNorm):
|
15 |
+
|
16 |
+
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
|
17 |
+
super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
module_device = x.device
|
21 |
+
downcast_x = _cast_if_autocast_enabled(x)
|
22 |
+
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
23 |
+
downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
24 |
+
with torch.autocast(enabled=False, device_type=module_device.type):
|
25 |
+
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
26 |
+
|
27 |
+
def rms_norm(x, weight=None, eps=1e-05):
|
28 |
+
output = x / torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
29 |
+
if weight is not None:
|
30 |
+
return output * weight
|
31 |
+
return output
|
32 |
+
|
33 |
+
class RMSNorm(torch.nn.Module):
|
34 |
+
|
35 |
+
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
36 |
+
super().__init__()
|
37 |
+
self.eps = eps
|
38 |
+
if weight:
|
39 |
+
self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device))
|
40 |
+
else:
|
41 |
+
self.register_parameter('weight', None)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
45 |
+
|
46 |
+
class LPRMSNorm(RMSNorm):
|
47 |
+
|
48 |
+
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
49 |
+
super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
|
50 |
+
|
51 |
+
def forward(self, x):
|
52 |
+
downcast_x = _cast_if_autocast_enabled(x)
|
53 |
+
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
54 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
55 |
+
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
56 |
+
NORM_CLASS_REGISTRY = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
|
param_init_fns.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from collections.abc import Sequence
|
4 |
+
from functools import partial
|
5 |
+
from typing import Optional, Tuple, Union
|
6 |
+
import torch
|
7 |
+
from torch import nn
|
8 |
+
from .norm import NORM_CLASS_REGISTRY
|
9 |
+
|
10 |
+
def torch_default_param_init_fn_(module: nn.Module, verbose: int=0, **kwargs):
|
11 |
+
del kwargs
|
12 |
+
if verbose > 1:
|
13 |
+
warnings.warn(f"Initializing network using module's reset_parameters attribute")
|
14 |
+
if hasattr(module, 'reset_parameters'):
|
15 |
+
module.reset_parameters()
|
16 |
+
|
17 |
+
def fused_init_helper_(module: nn.Module, init_fn_):
|
18 |
+
_fused = getattr(module, '_fused', None)
|
19 |
+
if _fused is None:
|
20 |
+
raise RuntimeError(f'Internal logic error')
|
21 |
+
(dim, splits) = _fused
|
22 |
+
splits = (0, *splits, module.weight.size(dim))
|
23 |
+
for (s, e) in zip(splits[:-1], splits[1:]):
|
24 |
+
slice_indices = [slice(None)] * module.weight.ndim
|
25 |
+
slice_indices[dim] = slice(s, e)
|
26 |
+
init_fn_(module.weight[slice_indices])
|
27 |
+
|
28 |
+
def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
29 |
+
del kwargs
|
30 |
+
if verbose > 1:
|
31 |
+
warnings.warn(f'If model has bias parameters they are initialized to 0.')
|
32 |
+
init_div_is_residual = init_div_is_residual
|
33 |
+
if init_div_is_residual is False:
|
34 |
+
div_is_residual = 1.0
|
35 |
+
elif init_div_is_residual is True:
|
36 |
+
div_is_residual = math.sqrt(2 * n_layers)
|
37 |
+
elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
|
38 |
+
div_is_residual = init_div_is_residual
|
39 |
+
elif isinstance(init_div_is_residual, str) and init_div_is_residual.isnumeric():
|
40 |
+
div_is_residual = float(init_div_is_residual)
|
41 |
+
else:
|
42 |
+
div_is_residual = 1.0
|
43 |
+
raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
|
44 |
+
if init_div_is_residual is not False:
|
45 |
+
if verbose > 1:
|
46 |
+
warnings.warn(f'Initializing _is_residual layers then dividing them by {div_is_residual:.3f}. ' + f'Set `init_div_is_residual: false` in init config to disable this.')
|
47 |
+
if isinstance(module, nn.Linear):
|
48 |
+
if hasattr(module, '_fused'):
|
49 |
+
fused_init_helper_(module, init_fn_)
|
50 |
+
else:
|
51 |
+
init_fn_(module.weight)
|
52 |
+
if module.bias is not None:
|
53 |
+
torch.nn.init.zeros_(module.bias)
|
54 |
+
if init_div_is_residual is not False and getattr(module, '_is_residual', False):
|
55 |
+
with torch.no_grad():
|
56 |
+
module.weight.div_(div_is_residual)
|
57 |
+
elif isinstance(module, nn.Embedding):
|
58 |
+
if emb_init_std is not None:
|
59 |
+
std = emb_init_std
|
60 |
+
if std == 0:
|
61 |
+
warnings.warn(f'Embedding layer initialized to 0.')
|
62 |
+
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
|
63 |
+
if verbose > 1:
|
64 |
+
warnings.warn(f'Embedding layer initialized using normal distribution with mean=0 and std={std!r}.')
|
65 |
+
elif emb_init_uniform_lim is not None:
|
66 |
+
lim = emb_init_uniform_lim
|
67 |
+
if isinstance(lim, Sequence):
|
68 |
+
if len(lim) > 2:
|
69 |
+
raise ValueError(f'Uniform init requires a min and a max limit. User input: {lim}.')
|
70 |
+
if lim[0] == lim[1]:
|
71 |
+
warnings.warn(f'Embedding layer initialized to {lim[0]}.')
|
72 |
+
else:
|
73 |
+
if lim == 0:
|
74 |
+
warnings.warn(f'Embedding layer initialized to 0.')
|
75 |
+
lim = [-lim, lim]
|
76 |
+
(a, b) = lim
|
77 |
+
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
|
78 |
+
if verbose > 1:
|
79 |
+
warnings.warn(f'Embedding layer initialized using uniform distribution in range {lim}.')
|
80 |
+
else:
|
81 |
+
emb_init_fn_ = init_fn_
|
82 |
+
emb_init_fn_(module.weight)
|
83 |
+
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
|
84 |
+
if verbose > 1:
|
85 |
+
warnings.warn(f'Norm weights are set to 1. If norm layer has a bias it is initialized to 0.')
|
86 |
+
if hasattr(module, 'weight') and module.weight is not None:
|
87 |
+
torch.nn.init.ones_(module.weight)
|
88 |
+
if hasattr(module, 'bias') and module.bias is not None:
|
89 |
+
torch.nn.init.zeros_(module.bias)
|
90 |
+
elif isinstance(module, nn.MultiheadAttention):
|
91 |
+
if module._qkv_same_embed_dim:
|
92 |
+
assert module.in_proj_weight is not None
|
93 |
+
assert module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None)
|
94 |
+
assert d_model is not None
|
95 |
+
_d = d_model
|
96 |
+
splits = (0, _d, 2 * _d, 3 * _d)
|
97 |
+
for (s, e) in zip(splits[:-1], splits[1:]):
|
98 |
+
init_fn_(module.in_proj_weight[s:e])
|
99 |
+
else:
|
100 |
+
assert module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None)
|
101 |
+
assert module.in_proj_weight is None
|
102 |
+
init_fn_(module.q_proj_weight)
|
103 |
+
init_fn_(module.k_proj_weight)
|
104 |
+
init_fn_(module.v_proj_weight)
|
105 |
+
if module.in_proj_bias is not None:
|
106 |
+
torch.nn.init.zeros_(module.in_proj_bias)
|
107 |
+
if module.bias_k is not None:
|
108 |
+
torch.nn.init.zeros_(module.bias_k)
|
109 |
+
if module.bias_v is not None:
|
110 |
+
torch.nn.init.zeros_(module.bias_v)
|
111 |
+
init_fn_(module.out_proj.weight)
|
112 |
+
if init_div_is_residual is not False and getattr(module.out_proj, '_is_residual', False):
|
113 |
+
with torch.no_grad():
|
114 |
+
module.out_proj.weight.div_(div_is_residual)
|
115 |
+
if module.out_proj.bias is not None:
|
116 |
+
torch.nn.init.zeros_(module.out_proj.bias)
|
117 |
+
else:
|
118 |
+
for _ in module.parameters(recurse=False):
|
119 |
+
raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
|
120 |
+
|
121 |
+
def _normal_init_(std, mean=0.0):
|
122 |
+
return partial(torch.nn.init.normal_, mean=mean, std=std)
|
123 |
+
|
124 |
+
def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
125 |
+
del kwargs
|
126 |
+
init_fn_ = _normal_init_(std=std)
|
127 |
+
if verbose > 1:
|
128 |
+
warnings.warn(f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}')
|
129 |
+
generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
130 |
+
|
131 |
+
def baseline_param_init_fn_(module: nn.Module, init_std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
132 |
+
del kwargs
|
133 |
+
if init_std is None:
|
134 |
+
raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
|
135 |
+
_normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
136 |
+
|
137 |
+
def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
138 |
+
del kwargs
|
139 |
+
std = math.sqrt(2 / (5 * d_model))
|
140 |
+
_normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
141 |
+
|
142 |
+
def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
143 |
+
"""From section 2.3.1 of GPT-NeoX-20B:
|
144 |
+
|
145 |
+
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
|
146 |
+
see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
|
147 |
+
and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
|
148 |
+
"""
|
149 |
+
del kwargs
|
150 |
+
residual_div = n_layers / math.sqrt(10)
|
151 |
+
if verbose > 1:
|
152 |
+
warnings.warn(f'setting init_div_is_residual to {residual_div}')
|
153 |
+
small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
154 |
+
|
155 |
+
def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
|
156 |
+
del kwargs
|
157 |
+
if verbose > 1:
|
158 |
+
warnings.warn(f'Using nn.init.kaiming_uniform_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
|
159 |
+
kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
160 |
+
generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
161 |
+
|
162 |
+
def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
|
163 |
+
del kwargs
|
164 |
+
if verbose > 1:
|
165 |
+
warnings.warn(f'Using nn.init.kaiming_normal_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
|
166 |
+
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
167 |
+
generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
168 |
+
|
169 |
+
def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
|
170 |
+
del kwargs
|
171 |
+
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
|
172 |
+
if verbose > 1:
|
173 |
+
warnings.warn(f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' + f'gain={init_gain}')
|
174 |
+
generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
175 |
+
|
176 |
+
def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
|
177 |
+
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
|
178 |
+
if verbose > 1:
|
179 |
+
warnings.warn(f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' + f'gain={init_gain}')
|
180 |
+
generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
181 |
+
MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:119a68ab92d3200f185ed35e1ae1758148af5487b90354f876652a555cc9ec6a
|
3 |
+
size 26594704201
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"bos_token": "<|endoftext|>",
|
7 |
+
"eos_token": "<|endoftext|>",
|
8 |
+
"unk_token": "<|endoftext|>"
|
9 |
+
}
|
test_itex_warm.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from intel_extension_for_transformers.backends.neural_engine.compile import compile
|
2 |
+
# graph = compile("/home/ubuntu/mengfeil/IR/llama-7b-bf16/")
|
3 |
+
# graph = compile("/home/ubuntu/mengfeil/IR/llama-7b-int8/")
|
4 |
+
# graph = compile("./llama-7b-hf-conv-itrex-bf16")
|
5 |
+
graph = compile("/home/ubuntu/neuralchat_server/frameworks.ai.nlp-toolkit.intel-nlp-toolkit/examples/huggingface/pytorch/text-generation/deployment/bf16ir")
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaTokenizer, AutoModel, AutoConfig
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import time
|
11 |
+
|
12 |
+
model_name = "../mengfeil/llama-7b"
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
|
14 |
+
config = AutoConfig.from_pretrained(model_name)
|
15 |
+
|
16 |
+
#prompt = "Once upon a time, there existed a little girl who liked to have adventures." + \
|
17 |
+
# " She wanted to go to places and meet new people, and have fun"
|
18 |
+
# prompt = "Once upon a time, there existed a little girl, who liked to have adventures. She wanted to go to places and meet new people, and have fun."
|
19 |
+
prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.\n Human: tell me something about China.\n Assistant:"
|
20 |
+
|
21 |
+
print(prompt)
|
22 |
+
init_input_ids = tokenizer(prompt, return_tensors="pt").input_ids[0]
|
23 |
+
|
24 |
+
|
25 |
+
input_ids = init_input_ids.clone()
|
26 |
+
|
27 |
+
attention_mask = torch.ones(len(input_ids)+1)
|
28 |
+
attention_mask[0] = 0
|
29 |
+
position_ids = torch.arange(len(input_ids))
|
30 |
+
past_key_value = tuple([(torch.zeros([1,32,1,128]), torch.zeros([1,32,1,128])) for i in range(32)])
|
31 |
+
|
32 |
+
input_ids = input_ids.unsqueeze(0)
|
33 |
+
attention_mask = attention_mask.unsqueeze(0)
|
34 |
+
position_ids = position_ids.unsqueeze(0)
|
35 |
+
all_input_ids = input_ids.clone()
|
36 |
+
|
37 |
+
|
38 |
+
# input_ids_1 = input_ids.cpu().numpy().astype(np.int32)
|
39 |
+
# attention_mask_1 = attention_mask.cpu().numpy().astype(np.int32)
|
40 |
+
# past_k_v = [past_key_value[i][j].cpu().numpy() for i in range(32) for j in range(2)]
|
41 |
+
|
42 |
+
max_new_tokens = 32
|
43 |
+
temperature = 0.9
|
44 |
+
|
45 |
+
|
46 |
+
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
|
47 |
+
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
48 |
+
Args:
|
49 |
+
logits: logits distribution shape (vocabulary size)
|
50 |
+
top_k >0: keep only top k tokens with highest probability (top-k filtering).
|
51 |
+
top_p >0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
52 |
+
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
53 |
+
"""
|
54 |
+
assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear
|
55 |
+
top_k = min(top_k, logits.size(-1)) # Safety check
|
56 |
+
if top_k > 0:
|
57 |
+
# Remove all tokens with a probability less than the last token of the top-k
|
58 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
59 |
+
logits[indices_to_remove] = filter_value
|
60 |
+
|
61 |
+
if top_p > 0.0:
|
62 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
63 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
64 |
+
|
65 |
+
# Remove tokens with cumulative probability above the threshold
|
66 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
67 |
+
# Shift the indices to the right to keep also the first token above the threshold
|
68 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
69 |
+
sorted_indices_to_remove[..., 0] = 0
|
70 |
+
|
71 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
72 |
+
logits[indices_to_remove] = filter_value
|
73 |
+
return logits
|
74 |
+
|
75 |
+
|
76 |
+
# start
|
77 |
+
total_time = 0.0
|
78 |
+
num_iter = 10
|
79 |
+
num_warmup = 3
|
80 |
+
|
81 |
+
for i in range(num_iter):
|
82 |
+
|
83 |
+
input_ids_1 = input_ids.cpu().numpy().astype(np.int32)
|
84 |
+
attention_mask_1 = attention_mask.cpu().numpy().astype(np.int32)
|
85 |
+
past_k_v = [past_key_value[i][j].cpu().numpy() for i in range(32) for j in range(2)]
|
86 |
+
output_ids = list(init_input_ids)
|
87 |
+
|
88 |
+
tic = time.time()
|
89 |
+
|
90 |
+
for step in range(max_new_tokens):
|
91 |
+
a = time.time()
|
92 |
+
predictions = graph.inference([input_ids_1, attention_mask_1] + past_k_v)
|
93 |
+
# predictions = graph.inference([input_ids_1] + past_k_v + [attention_mask_1])
|
94 |
+
print(time.time() - a)
|
95 |
+
|
96 |
+
outs = []
|
97 |
+
for key in predictions:
|
98 |
+
outs.append(predictions[key])
|
99 |
+
|
100 |
+
logits = outs[0]
|
101 |
+
past_k_v = outs[1:]
|
102 |
+
logits = torch.from_numpy(logits)
|
103 |
+
|
104 |
+
next_token_logits = logits[:, -1, :]
|
105 |
+
probs = torch.nn.functional.softmax(next_token_logits, dim=-1)
|
106 |
+
token = int(torch.argmax(probs, dim=-1))
|
107 |
+
|
108 |
+
"""
|
109 |
+
last_token_logits = logits[0][-1]
|
110 |
+
logits = logits[0, -1, :] / temperature
|
111 |
+
filtered_logits = top_k_top_p_filtering(logits, top_k=10, top_p=0.8)
|
112 |
+
probabilities = F.softmax(filtered_logits, dim=-1)
|
113 |
+
token = int(torch.multinomial(probabilities, 1))
|
114 |
+
"""
|
115 |
+
|
116 |
+
output_ids.append(token)
|
117 |
+
input_ids_1 = torch.tensor([[token]])
|
118 |
+
attention_mask_1 = torch.cat([torch.from_numpy(attention_mask_1), torch.ones([1, 1])], dim=-1)
|
119 |
+
input_ids_1 = input_ids_1.cpu().numpy().astype(np.int32)
|
120 |
+
attention_mask_1 = attention_mask_1.cpu().numpy().astype(np.int32)
|
121 |
+
|
122 |
+
toc = time.time()
|
123 |
+
if i >= num_warmup:
|
124 |
+
total_time += (toc - tic)
|
125 |
+
# print(output_ids)
|
126 |
+
print(tokenizer.decode(output_ids, skip_special_tokens=True))
|
127 |
+
|
128 |
+
print("Inference latency: %.3f ms." % (total_time / (num_iter - num_warmup) * 1000))
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"model_max_length": 2048,
|
7 |
+
"tokenizer_class": "GPTNeoXTokenizer",
|
8 |
+
"unk_token": "<|endoftext|>"
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,3616 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.3713417039942442,
|
5 |
+
"global_step": 6000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 9.278350515463919e-08,
|
13 |
+
"loss": 2.5166,
|
14 |
+
"step": 10
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.0,
|
18 |
+
"learning_rate": 1.9587628865979384e-07,
|
19 |
+
"loss": 1.9059,
|
20 |
+
"step": 20
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.0,
|
24 |
+
"learning_rate": 2.989690721649485e-07,
|
25 |
+
"loss": 1.7869,
|
26 |
+
"step": 30
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.0,
|
30 |
+
"learning_rate": 4.0206185567010316e-07,
|
31 |
+
"loss": 1.7863,
|
32 |
+
"step": 40
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.0,
|
36 |
+
"learning_rate": 5.051546391752578e-07,
|
37 |
+
"loss": 1.6946,
|
38 |
+
"step": 50
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.0,
|
42 |
+
"learning_rate": 6.082474226804124e-07,
|
43 |
+
"loss": 1.7419,
|
44 |
+
"step": 60
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0,
|
48 |
+
"learning_rate": 7.11340206185567e-07,
|
49 |
+
"loss": 1.645,
|
50 |
+
"step": 70
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.0,
|
54 |
+
"learning_rate": 8.144329896907217e-07,
|
55 |
+
"loss": 1.6611,
|
56 |
+
"step": 80
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.01,
|
60 |
+
"learning_rate": 9.175257731958763e-07,
|
61 |
+
"loss": 1.5985,
|
62 |
+
"step": 90
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.01,
|
66 |
+
"learning_rate": 1.020618556701031e-06,
|
67 |
+
"loss": 1.6198,
|
68 |
+
"step": 100
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.01,
|
72 |
+
"learning_rate": 1.1237113402061856e-06,
|
73 |
+
"loss": 1.6259,
|
74 |
+
"step": 110
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.01,
|
78 |
+
"learning_rate": 1.2268041237113403e-06,
|
79 |
+
"loss": 1.5973,
|
80 |
+
"step": 120
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.01,
|
84 |
+
"learning_rate": 1.329896907216495e-06,
|
85 |
+
"loss": 1.5941,
|
86 |
+
"step": 130
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.01,
|
90 |
+
"learning_rate": 1.4329896907216496e-06,
|
91 |
+
"loss": 1.5597,
|
92 |
+
"step": 140
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.01,
|
96 |
+
"learning_rate": 1.5360824742268042e-06,
|
97 |
+
"loss": 1.5672,
|
98 |
+
"step": 150
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.01,
|
102 |
+
"learning_rate": 1.639175257731959e-06,
|
103 |
+
"loss": 1.5372,
|
104 |
+
"step": 160
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.01,
|
108 |
+
"learning_rate": 1.7422680412371134e-06,
|
109 |
+
"loss": 1.5715,
|
110 |
+
"step": 170
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.01,
|
114 |
+
"learning_rate": 1.8453608247422682e-06,
|
115 |
+
"loss": 1.5389,
|
116 |
+
"step": 180
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.01,
|
120 |
+
"learning_rate": 1.948453608247423e-06,
|
121 |
+
"loss": 1.5525,
|
122 |
+
"step": 190
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.01,
|
126 |
+
"learning_rate": 2.0515463917525773e-06,
|
127 |
+
"loss": 1.5871,
|
128 |
+
"step": 200
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.01,
|
132 |
+
"learning_rate": 2.1546391752577322e-06,
|
133 |
+
"loss": 1.5442,
|
134 |
+
"step": 210
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.01,
|
138 |
+
"learning_rate": 2.2577319587628867e-06,
|
139 |
+
"loss": 1.5335,
|
140 |
+
"step": 220
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.01,
|
144 |
+
"learning_rate": 2.3608247422680415e-06,
|
145 |
+
"loss": 1.5103,
|
146 |
+
"step": 230
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.01,
|
150 |
+
"learning_rate": 2.463917525773196e-06,
|
151 |
+
"loss": 1.5016,
|
152 |
+
"step": 240
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.02,
|
156 |
+
"learning_rate": 2.5670103092783504e-06,
|
157 |
+
"loss": 1.5101,
|
158 |
+
"step": 250
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.02,
|
162 |
+
"learning_rate": 2.6701030927835053e-06,
|
163 |
+
"loss": 1.5323,
|
164 |
+
"step": 260
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.02,
|
168 |
+
"learning_rate": 2.77319587628866e-06,
|
169 |
+
"loss": 1.4785,
|
170 |
+
"step": 270
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.02,
|
174 |
+
"learning_rate": 2.8762886597938146e-06,
|
175 |
+
"loss": 1.4132,
|
176 |
+
"step": 280
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.02,
|
180 |
+
"learning_rate": 2.979381443298969e-06,
|
181 |
+
"loss": 1.4733,
|
182 |
+
"step": 290
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.02,
|
186 |
+
"learning_rate": 3.082474226804124e-06,
|
187 |
+
"loss": 1.4258,
|
188 |
+
"step": 300
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.02,
|
192 |
+
"learning_rate": 3.1855670103092784e-06,
|
193 |
+
"loss": 1.4557,
|
194 |
+
"step": 310
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.02,
|
198 |
+
"learning_rate": 3.2886597938144333e-06,
|
199 |
+
"loss": 1.44,
|
200 |
+
"step": 320
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.02,
|
204 |
+
"learning_rate": 3.391752577319588e-06,
|
205 |
+
"loss": 1.4348,
|
206 |
+
"step": 330
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.02,
|
210 |
+
"learning_rate": 3.494845360824742e-06,
|
211 |
+
"loss": 1.406,
|
212 |
+
"step": 340
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.02,
|
216 |
+
"learning_rate": 3.597938144329897e-06,
|
217 |
+
"loss": 1.4239,
|
218 |
+
"step": 350
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.02,
|
222 |
+
"learning_rate": 3.701030927835052e-06,
|
223 |
+
"loss": 1.4185,
|
224 |
+
"step": 360
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.02,
|
228 |
+
"learning_rate": 3.8041237113402064e-06,
|
229 |
+
"loss": 1.3954,
|
230 |
+
"step": 370
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.02,
|
234 |
+
"learning_rate": 3.907216494845361e-06,
|
235 |
+
"loss": 1.3759,
|
236 |
+
"step": 380
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.02,
|
240 |
+
"learning_rate": 4.010309278350516e-06,
|
241 |
+
"loss": 1.3231,
|
242 |
+
"step": 390
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.02,
|
246 |
+
"learning_rate": 4.11340206185567e-06,
|
247 |
+
"loss": 1.3059,
|
248 |
+
"step": 400
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.03,
|
252 |
+
"learning_rate": 4.216494845360825e-06,
|
253 |
+
"loss": 1.3258,
|
254 |
+
"step": 410
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.03,
|
258 |
+
"learning_rate": 4.31958762886598e-06,
|
259 |
+
"loss": 1.3722,
|
260 |
+
"step": 420
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.03,
|
264 |
+
"learning_rate": 4.422680412371134e-06,
|
265 |
+
"loss": 1.2917,
|
266 |
+
"step": 430
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.03,
|
270 |
+
"learning_rate": 4.525773195876289e-06,
|
271 |
+
"loss": 1.2893,
|
272 |
+
"step": 440
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.03,
|
276 |
+
"learning_rate": 4.628865979381444e-06,
|
277 |
+
"loss": 1.2865,
|
278 |
+
"step": 450
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.03,
|
282 |
+
"learning_rate": 4.731958762886599e-06,
|
283 |
+
"loss": 1.28,
|
284 |
+
"step": 460
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.03,
|
288 |
+
"learning_rate": 4.835051546391753e-06,
|
289 |
+
"loss": 1.299,
|
290 |
+
"step": 470
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.03,
|
294 |
+
"learning_rate": 4.9381443298969075e-06,
|
295 |
+
"loss": 1.2949,
|
296 |
+
"step": 480
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.03,
|
300 |
+
"learning_rate": 5.041237113402062e-06,
|
301 |
+
"loss": 1.3078,
|
302 |
+
"step": 490
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.03,
|
306 |
+
"learning_rate": 5.144329896907216e-06,
|
307 |
+
"loss": 1.2242,
|
308 |
+
"step": 500
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.03,
|
312 |
+
"learning_rate": 5.247422680412372e-06,
|
313 |
+
"loss": 1.2714,
|
314 |
+
"step": 510
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.03,
|
318 |
+
"learning_rate": 5.350515463917526e-06,
|
319 |
+
"loss": 1.2482,
|
320 |
+
"step": 520
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.03,
|
324 |
+
"learning_rate": 5.45360824742268e-06,
|
325 |
+
"loss": 1.2703,
|
326 |
+
"step": 530
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.03,
|
330 |
+
"learning_rate": 5.556701030927836e-06,
|
331 |
+
"loss": 1.2578,
|
332 |
+
"step": 540
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.03,
|
336 |
+
"learning_rate": 5.65979381443299e-06,
|
337 |
+
"loss": 1.2989,
|
338 |
+
"step": 550
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.03,
|
342 |
+
"learning_rate": 5.762886597938144e-06,
|
343 |
+
"loss": 1.2853,
|
344 |
+
"step": 560
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.04,
|
348 |
+
"learning_rate": 5.8659793814433e-06,
|
349 |
+
"loss": 1.3022,
|
350 |
+
"step": 570
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.04,
|
354 |
+
"learning_rate": 5.969072164948454e-06,
|
355 |
+
"loss": 1.2871,
|
356 |
+
"step": 580
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.04,
|
360 |
+
"learning_rate": 6.0721649484536086e-06,
|
361 |
+
"loss": 1.2679,
|
362 |
+
"step": 590
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.04,
|
366 |
+
"learning_rate": 6.1752577319587634e-06,
|
367 |
+
"loss": 1.2732,
|
368 |
+
"step": 600
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.04,
|
372 |
+
"learning_rate": 6.278350515463918e-06,
|
373 |
+
"loss": 1.2641,
|
374 |
+
"step": 610
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.04,
|
378 |
+
"learning_rate": 6.381443298969072e-06,
|
379 |
+
"loss": 1.2919,
|
380 |
+
"step": 620
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.04,
|
384 |
+
"learning_rate": 6.484536082474227e-06,
|
385 |
+
"loss": 1.2594,
|
386 |
+
"step": 630
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.04,
|
390 |
+
"learning_rate": 6.587628865979382e-06,
|
391 |
+
"loss": 1.2592,
|
392 |
+
"step": 640
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.04,
|
396 |
+
"learning_rate": 6.690721649484536e-06,
|
397 |
+
"loss": 1.2652,
|
398 |
+
"step": 650
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.04,
|
402 |
+
"learning_rate": 6.793814432989692e-06,
|
403 |
+
"loss": 1.3274,
|
404 |
+
"step": 660
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.04,
|
408 |
+
"learning_rate": 6.896907216494846e-06,
|
409 |
+
"loss": 1.2155,
|
410 |
+
"step": 670
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.04,
|
414 |
+
"learning_rate": 7e-06,
|
415 |
+
"loss": 1.2837,
|
416 |
+
"step": 680
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.04,
|
420 |
+
"learning_rate": 7.103092783505156e-06,
|
421 |
+
"loss": 1.265,
|
422 |
+
"step": 690
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.04,
|
426 |
+
"learning_rate": 7.20618556701031e-06,
|
427 |
+
"loss": 1.2427,
|
428 |
+
"step": 700
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.04,
|
432 |
+
"learning_rate": 7.309278350515464e-06,
|
433 |
+
"loss": 1.2688,
|
434 |
+
"step": 710
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.04,
|
438 |
+
"learning_rate": 7.412371134020619e-06,
|
439 |
+
"loss": 1.3071,
|
440 |
+
"step": 720
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.05,
|
444 |
+
"learning_rate": 7.515463917525773e-06,
|
445 |
+
"loss": 1.2346,
|
446 |
+
"step": 730
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.05,
|
450 |
+
"learning_rate": 7.618556701030928e-06,
|
451 |
+
"loss": 1.2246,
|
452 |
+
"step": 740
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.05,
|
456 |
+
"learning_rate": 7.721649484536083e-06,
|
457 |
+
"loss": 1.2604,
|
458 |
+
"step": 750
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.05,
|
462 |
+
"learning_rate": 7.824742268041238e-06,
|
463 |
+
"loss": 1.2589,
|
464 |
+
"step": 760
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.05,
|
468 |
+
"learning_rate": 7.927835051546391e-06,
|
469 |
+
"loss": 1.2512,
|
470 |
+
"step": 770
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.05,
|
474 |
+
"learning_rate": 8.030927835051548e-06,
|
475 |
+
"loss": 1.2229,
|
476 |
+
"step": 780
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.05,
|
480 |
+
"learning_rate": 8.134020618556701e-06,
|
481 |
+
"loss": 1.2326,
|
482 |
+
"step": 790
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.05,
|
486 |
+
"learning_rate": 8.237113402061856e-06,
|
487 |
+
"loss": 1.3097,
|
488 |
+
"step": 800
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.05,
|
492 |
+
"learning_rate": 8.34020618556701e-06,
|
493 |
+
"loss": 1.2358,
|
494 |
+
"step": 810
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.05,
|
498 |
+
"learning_rate": 8.443298969072166e-06,
|
499 |
+
"loss": 1.2746,
|
500 |
+
"step": 820
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.05,
|
504 |
+
"learning_rate": 8.54639175257732e-06,
|
505 |
+
"loss": 1.3063,
|
506 |
+
"step": 830
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.05,
|
510 |
+
"learning_rate": 8.649484536082475e-06,
|
511 |
+
"loss": 1.2702,
|
512 |
+
"step": 840
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.05,
|
516 |
+
"learning_rate": 8.75257731958763e-06,
|
517 |
+
"loss": 1.2421,
|
518 |
+
"step": 850
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.05,
|
522 |
+
"learning_rate": 8.855670103092783e-06,
|
523 |
+
"loss": 1.3047,
|
524 |
+
"step": 860
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.05,
|
528 |
+
"learning_rate": 8.95876288659794e-06,
|
529 |
+
"loss": 1.2452,
|
530 |
+
"step": 870
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.05,
|
534 |
+
"learning_rate": 9.061855670103093e-06,
|
535 |
+
"loss": 1.2753,
|
536 |
+
"step": 880
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.06,
|
540 |
+
"learning_rate": 9.164948453608248e-06,
|
541 |
+
"loss": 1.2532,
|
542 |
+
"step": 890
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.06,
|
546 |
+
"learning_rate": 9.268041237113403e-06,
|
547 |
+
"loss": 1.2379,
|
548 |
+
"step": 900
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.06,
|
552 |
+
"learning_rate": 9.371134020618558e-06,
|
553 |
+
"loss": 1.2891,
|
554 |
+
"step": 910
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.06,
|
558 |
+
"learning_rate": 9.474226804123711e-06,
|
559 |
+
"loss": 1.2773,
|
560 |
+
"step": 920
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.06,
|
564 |
+
"learning_rate": 9.577319587628868e-06,
|
565 |
+
"loss": 1.2753,
|
566 |
+
"step": 930
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.06,
|
570 |
+
"learning_rate": 9.68041237113402e-06,
|
571 |
+
"loss": 1.1976,
|
572 |
+
"step": 940
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.06,
|
576 |
+
"learning_rate": 9.783505154639176e-06,
|
577 |
+
"loss": 1.2721,
|
578 |
+
"step": 950
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.06,
|
582 |
+
"learning_rate": 9.88659793814433e-06,
|
583 |
+
"loss": 1.3058,
|
584 |
+
"step": 960
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.06,
|
588 |
+
"learning_rate": 9.989690721649485e-06,
|
589 |
+
"loss": 1.2383,
|
590 |
+
"step": 970
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.06,
|
594 |
+
"learning_rate": 9.998105303046253e-06,
|
595 |
+
"loss": 1.2356,
|
596 |
+
"step": 980
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.06,
|
600 |
+
"learning_rate": 9.996000084208755e-06,
|
601 |
+
"loss": 1.2639,
|
602 |
+
"step": 990
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.06,
|
606 |
+
"learning_rate": 9.993894865371256e-06,
|
607 |
+
"loss": 1.2689,
|
608 |
+
"step": 1000
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.06,
|
612 |
+
"learning_rate": 9.991789646533758e-06,
|
613 |
+
"loss": 1.2764,
|
614 |
+
"step": 1010
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.06,
|
618 |
+
"learning_rate": 9.989684427696261e-06,
|
619 |
+
"loss": 1.2602,
|
620 |
+
"step": 1020
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.06,
|
624 |
+
"learning_rate": 9.987579208858762e-06,
|
625 |
+
"loss": 1.3034,
|
626 |
+
"step": 1030
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.06,
|
630 |
+
"learning_rate": 9.985473990021264e-06,
|
631 |
+
"loss": 1.2318,
|
632 |
+
"step": 1040
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.06,
|
636 |
+
"learning_rate": 9.983368771183765e-06,
|
637 |
+
"loss": 1.252,
|
638 |
+
"step": 1050
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.07,
|
642 |
+
"learning_rate": 9.981263552346267e-06,
|
643 |
+
"loss": 1.3111,
|
644 |
+
"step": 1060
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.07,
|
648 |
+
"learning_rate": 9.97915833350877e-06,
|
649 |
+
"loss": 1.255,
|
650 |
+
"step": 1070
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.07,
|
654 |
+
"learning_rate": 9.97705311467127e-06,
|
655 |
+
"loss": 1.2736,
|
656 |
+
"step": 1080
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.07,
|
660 |
+
"learning_rate": 9.974947895833773e-06,
|
661 |
+
"loss": 1.3128,
|
662 |
+
"step": 1090
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.07,
|
666 |
+
"learning_rate": 9.972842676996276e-06,
|
667 |
+
"loss": 1.2349,
|
668 |
+
"step": 1100
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.07,
|
672 |
+
"learning_rate": 9.970737458158777e-06,
|
673 |
+
"loss": 1.2797,
|
674 |
+
"step": 1110
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.07,
|
678 |
+
"learning_rate": 9.968632239321279e-06,
|
679 |
+
"loss": 1.2698,
|
680 |
+
"step": 1120
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.07,
|
684 |
+
"learning_rate": 9.96652702048378e-06,
|
685 |
+
"loss": 1.2714,
|
686 |
+
"step": 1130
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.07,
|
690 |
+
"learning_rate": 9.964421801646282e-06,
|
691 |
+
"loss": 1.2965,
|
692 |
+
"step": 1140
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.07,
|
696 |
+
"learning_rate": 9.962316582808785e-06,
|
697 |
+
"loss": 1.2764,
|
698 |
+
"step": 1150
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.07,
|
702 |
+
"learning_rate": 9.960211363971286e-06,
|
703 |
+
"loss": 1.2294,
|
704 |
+
"step": 1160
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.07,
|
708 |
+
"learning_rate": 9.958106145133788e-06,
|
709 |
+
"loss": 1.2623,
|
710 |
+
"step": 1170
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.07,
|
714 |
+
"learning_rate": 9.956000926296289e-06,
|
715 |
+
"loss": 1.2814,
|
716 |
+
"step": 1180
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.07,
|
720 |
+
"learning_rate": 9.953895707458791e-06,
|
721 |
+
"loss": 1.2793,
|
722 |
+
"step": 1190
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.07,
|
726 |
+
"learning_rate": 9.951790488621294e-06,
|
727 |
+
"loss": 1.2749,
|
728 |
+
"step": 1200
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.07,
|
732 |
+
"learning_rate": 9.949685269783795e-06,
|
733 |
+
"loss": 1.2689,
|
734 |
+
"step": 1210
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.08,
|
738 |
+
"learning_rate": 9.947580050946297e-06,
|
739 |
+
"loss": 1.2913,
|
740 |
+
"step": 1220
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.08,
|
744 |
+
"learning_rate": 9.9454748321088e-06,
|
745 |
+
"loss": 1.2386,
|
746 |
+
"step": 1230
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.08,
|
750 |
+
"learning_rate": 9.9433696132713e-06,
|
751 |
+
"loss": 1.2519,
|
752 |
+
"step": 1240
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.08,
|
756 |
+
"learning_rate": 9.941264394433803e-06,
|
757 |
+
"loss": 1.2893,
|
758 |
+
"step": 1250
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.08,
|
762 |
+
"learning_rate": 9.939159175596304e-06,
|
763 |
+
"loss": 1.2398,
|
764 |
+
"step": 1260
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.08,
|
768 |
+
"learning_rate": 9.937053956758805e-06,
|
769 |
+
"loss": 1.2836,
|
770 |
+
"step": 1270
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.08,
|
774 |
+
"learning_rate": 9.934948737921307e-06,
|
775 |
+
"loss": 1.2326,
|
776 |
+
"step": 1280
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.08,
|
780 |
+
"learning_rate": 9.93284351908381e-06,
|
781 |
+
"loss": 1.2768,
|
782 |
+
"step": 1290
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.08,
|
786 |
+
"learning_rate": 9.93073830024631e-06,
|
787 |
+
"loss": 1.2584,
|
788 |
+
"step": 1300
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.08,
|
792 |
+
"learning_rate": 9.928633081408813e-06,
|
793 |
+
"loss": 1.2738,
|
794 |
+
"step": 1310
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.08,
|
798 |
+
"learning_rate": 9.926527862571314e-06,
|
799 |
+
"loss": 1.2329,
|
800 |
+
"step": 1320
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.08,
|
804 |
+
"learning_rate": 9.924422643733816e-06,
|
805 |
+
"loss": 1.2623,
|
806 |
+
"step": 1330
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.08,
|
810 |
+
"learning_rate": 9.922317424896319e-06,
|
811 |
+
"loss": 1.2839,
|
812 |
+
"step": 1340
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.08,
|
816 |
+
"learning_rate": 9.92021220605882e-06,
|
817 |
+
"loss": 1.2806,
|
818 |
+
"step": 1350
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.08,
|
822 |
+
"learning_rate": 9.918106987221322e-06,
|
823 |
+
"loss": 1.232,
|
824 |
+
"step": 1360
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.08,
|
828 |
+
"learning_rate": 9.916001768383825e-06,
|
829 |
+
"loss": 1.256,
|
830 |
+
"step": 1370
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.09,
|
834 |
+
"learning_rate": 9.913896549546325e-06,
|
835 |
+
"loss": 1.225,
|
836 |
+
"step": 1380
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.09,
|
840 |
+
"learning_rate": 9.911791330708828e-06,
|
841 |
+
"loss": 1.2247,
|
842 |
+
"step": 1390
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.09,
|
846 |
+
"learning_rate": 9.909686111871329e-06,
|
847 |
+
"loss": 1.2422,
|
848 |
+
"step": 1400
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.09,
|
852 |
+
"learning_rate": 9.907580893033831e-06,
|
853 |
+
"loss": 1.2499,
|
854 |
+
"step": 1410
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.09,
|
858 |
+
"learning_rate": 9.905475674196334e-06,
|
859 |
+
"loss": 1.2569,
|
860 |
+
"step": 1420
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.09,
|
864 |
+
"learning_rate": 9.903370455358834e-06,
|
865 |
+
"loss": 1.2771,
|
866 |
+
"step": 1430
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.09,
|
870 |
+
"learning_rate": 9.901265236521337e-06,
|
871 |
+
"loss": 1.2789,
|
872 |
+
"step": 1440
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.09,
|
876 |
+
"learning_rate": 9.89916001768384e-06,
|
877 |
+
"loss": 1.2213,
|
878 |
+
"step": 1450
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.09,
|
882 |
+
"learning_rate": 9.89705479884634e-06,
|
883 |
+
"loss": 1.2393,
|
884 |
+
"step": 1460
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.09,
|
888 |
+
"learning_rate": 9.894949580008843e-06,
|
889 |
+
"loss": 1.257,
|
890 |
+
"step": 1470
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.09,
|
894 |
+
"learning_rate": 9.892844361171344e-06,
|
895 |
+
"loss": 1.2572,
|
896 |
+
"step": 1480
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.09,
|
900 |
+
"learning_rate": 9.890739142333846e-06,
|
901 |
+
"loss": 1.2503,
|
902 |
+
"step": 1490
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 0.09,
|
906 |
+
"learning_rate": 9.888633923496349e-06,
|
907 |
+
"loss": 1.2404,
|
908 |
+
"step": 1500
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.09,
|
912 |
+
"learning_rate": 9.88652870465885e-06,
|
913 |
+
"loss": 1.2847,
|
914 |
+
"step": 1510
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.09,
|
918 |
+
"learning_rate": 9.884423485821352e-06,
|
919 |
+
"loss": 1.2551,
|
920 |
+
"step": 1520
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.09,
|
924 |
+
"learning_rate": 9.882318266983854e-06,
|
925 |
+
"loss": 1.2741,
|
926 |
+
"step": 1530
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.1,
|
930 |
+
"learning_rate": 9.880213048146355e-06,
|
931 |
+
"loss": 1.2735,
|
932 |
+
"step": 1540
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 0.1,
|
936 |
+
"learning_rate": 9.878107829308858e-06,
|
937 |
+
"loss": 1.273,
|
938 |
+
"step": 1550
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.1,
|
942 |
+
"learning_rate": 9.876002610471358e-06,
|
943 |
+
"loss": 1.2357,
|
944 |
+
"step": 1560
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 0.1,
|
948 |
+
"learning_rate": 9.873897391633861e-06,
|
949 |
+
"loss": 1.1864,
|
950 |
+
"step": 1570
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.1,
|
954 |
+
"learning_rate": 9.871792172796363e-06,
|
955 |
+
"loss": 1.277,
|
956 |
+
"step": 1580
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.1,
|
960 |
+
"learning_rate": 9.869686953958864e-06,
|
961 |
+
"loss": 1.2375,
|
962 |
+
"step": 1590
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.1,
|
966 |
+
"learning_rate": 9.867581735121367e-06,
|
967 |
+
"loss": 1.2754,
|
968 |
+
"step": 1600
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.1,
|
972 |
+
"learning_rate": 9.865476516283868e-06,
|
973 |
+
"loss": 1.2051,
|
974 |
+
"step": 1610
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.1,
|
978 |
+
"learning_rate": 9.86337129744637e-06,
|
979 |
+
"loss": 1.2579,
|
980 |
+
"step": 1620
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 0.1,
|
984 |
+
"learning_rate": 9.861266078608873e-06,
|
985 |
+
"loss": 1.2216,
|
986 |
+
"step": 1630
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.1,
|
990 |
+
"learning_rate": 9.859160859771373e-06,
|
991 |
+
"loss": 1.2529,
|
992 |
+
"step": 1640
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.1,
|
996 |
+
"learning_rate": 9.857055640933876e-06,
|
997 |
+
"loss": 1.207,
|
998 |
+
"step": 1650
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.1,
|
1002 |
+
"learning_rate": 9.854950422096378e-06,
|
1003 |
+
"loss": 1.2275,
|
1004 |
+
"step": 1660
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.1,
|
1008 |
+
"learning_rate": 9.85284520325888e-06,
|
1009 |
+
"loss": 1.2769,
|
1010 |
+
"step": 1670
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.1,
|
1014 |
+
"learning_rate": 9.850739984421382e-06,
|
1015 |
+
"loss": 1.2165,
|
1016 |
+
"step": 1680
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.1,
|
1020 |
+
"learning_rate": 9.848634765583883e-06,
|
1021 |
+
"loss": 1.2903,
|
1022 |
+
"step": 1690
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.11,
|
1026 |
+
"learning_rate": 9.846529546746385e-06,
|
1027 |
+
"loss": 1.2548,
|
1028 |
+
"step": 1700
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 0.11,
|
1032 |
+
"learning_rate": 9.844424327908888e-06,
|
1033 |
+
"loss": 1.2652,
|
1034 |
+
"step": 1710
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.11,
|
1038 |
+
"learning_rate": 9.842319109071388e-06,
|
1039 |
+
"loss": 1.2718,
|
1040 |
+
"step": 1720
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.11,
|
1044 |
+
"learning_rate": 9.84021389023389e-06,
|
1045 |
+
"loss": 1.269,
|
1046 |
+
"step": 1730
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.11,
|
1050 |
+
"learning_rate": 9.838108671396393e-06,
|
1051 |
+
"loss": 1.2362,
|
1052 |
+
"step": 1740
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.11,
|
1056 |
+
"learning_rate": 9.836003452558894e-06,
|
1057 |
+
"loss": 1.205,
|
1058 |
+
"step": 1750
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.11,
|
1062 |
+
"learning_rate": 9.833898233721397e-06,
|
1063 |
+
"loss": 1.2649,
|
1064 |
+
"step": 1760
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.11,
|
1068 |
+
"learning_rate": 9.831793014883897e-06,
|
1069 |
+
"loss": 1.2517,
|
1070 |
+
"step": 1770
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.11,
|
1074 |
+
"learning_rate": 9.8296877960464e-06,
|
1075 |
+
"loss": 1.2015,
|
1076 |
+
"step": 1780
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.11,
|
1080 |
+
"learning_rate": 9.827582577208902e-06,
|
1081 |
+
"loss": 1.2382,
|
1082 |
+
"step": 1790
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.11,
|
1086 |
+
"learning_rate": 9.825477358371403e-06,
|
1087 |
+
"loss": 1.2236,
|
1088 |
+
"step": 1800
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.11,
|
1092 |
+
"learning_rate": 9.823372139533906e-06,
|
1093 |
+
"loss": 1.2503,
|
1094 |
+
"step": 1810
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.11,
|
1098 |
+
"learning_rate": 9.821266920696407e-06,
|
1099 |
+
"loss": 1.2409,
|
1100 |
+
"step": 1820
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.11,
|
1104 |
+
"learning_rate": 9.819161701858909e-06,
|
1105 |
+
"loss": 1.2236,
|
1106 |
+
"step": 1830
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.11,
|
1110 |
+
"learning_rate": 9.817056483021412e-06,
|
1111 |
+
"loss": 1.2246,
|
1112 |
+
"step": 1840
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.11,
|
1116 |
+
"learning_rate": 9.814951264183912e-06,
|
1117 |
+
"loss": 1.234,
|
1118 |
+
"step": 1850
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.12,
|
1122 |
+
"learning_rate": 9.812846045346415e-06,
|
1123 |
+
"loss": 1.2384,
|
1124 |
+
"step": 1860
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.12,
|
1128 |
+
"learning_rate": 9.810740826508917e-06,
|
1129 |
+
"loss": 1.2103,
|
1130 |
+
"step": 1870
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.12,
|
1134 |
+
"learning_rate": 9.808635607671418e-06,
|
1135 |
+
"loss": 1.2398,
|
1136 |
+
"step": 1880
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.12,
|
1140 |
+
"learning_rate": 9.80653038883392e-06,
|
1141 |
+
"loss": 1.2246,
|
1142 |
+
"step": 1890
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.12,
|
1146 |
+
"learning_rate": 9.804425169996421e-06,
|
1147 |
+
"loss": 1.1894,
|
1148 |
+
"step": 1900
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 0.12,
|
1152 |
+
"learning_rate": 9.802319951158924e-06,
|
1153 |
+
"loss": 1.262,
|
1154 |
+
"step": 1910
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.12,
|
1158 |
+
"learning_rate": 9.800214732321426e-06,
|
1159 |
+
"loss": 1.2595,
|
1160 |
+
"step": 1920
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.12,
|
1164 |
+
"learning_rate": 9.798109513483927e-06,
|
1165 |
+
"loss": 1.1954,
|
1166 |
+
"step": 1930
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.12,
|
1170 |
+
"learning_rate": 9.79600429464643e-06,
|
1171 |
+
"loss": 1.2578,
|
1172 |
+
"step": 1940
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.12,
|
1176 |
+
"learning_rate": 9.793899075808932e-06,
|
1177 |
+
"loss": 1.2286,
|
1178 |
+
"step": 1950
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.12,
|
1182 |
+
"learning_rate": 9.791793856971433e-06,
|
1183 |
+
"loss": 1.2455,
|
1184 |
+
"step": 1960
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 0.12,
|
1188 |
+
"learning_rate": 9.789688638133936e-06,
|
1189 |
+
"loss": 1.214,
|
1190 |
+
"step": 1970
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 0.12,
|
1194 |
+
"learning_rate": 9.787583419296436e-06,
|
1195 |
+
"loss": 1.2488,
|
1196 |
+
"step": 1980
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.12,
|
1200 |
+
"learning_rate": 9.785478200458939e-06,
|
1201 |
+
"loss": 1.266,
|
1202 |
+
"step": 1990
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.12,
|
1206 |
+
"learning_rate": 9.783372981621441e-06,
|
1207 |
+
"loss": 1.2139,
|
1208 |
+
"step": 2000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.12,
|
1212 |
+
"learning_rate": 9.781267762783942e-06,
|
1213 |
+
"loss": 1.2516,
|
1214 |
+
"step": 2010
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.13,
|
1218 |
+
"learning_rate": 9.779162543946445e-06,
|
1219 |
+
"loss": 1.2878,
|
1220 |
+
"step": 2020
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.13,
|
1224 |
+
"learning_rate": 9.777057325108945e-06,
|
1225 |
+
"loss": 1.2494,
|
1226 |
+
"step": 2030
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.13,
|
1230 |
+
"learning_rate": 9.774952106271448e-06,
|
1231 |
+
"loss": 1.207,
|
1232 |
+
"step": 2040
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 0.13,
|
1236 |
+
"learning_rate": 9.77284688743395e-06,
|
1237 |
+
"loss": 1.2796,
|
1238 |
+
"step": 2050
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 0.13,
|
1242 |
+
"learning_rate": 9.770741668596451e-06,
|
1243 |
+
"loss": 1.2285,
|
1244 |
+
"step": 2060
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.13,
|
1248 |
+
"learning_rate": 9.768636449758954e-06,
|
1249 |
+
"loss": 1.2467,
|
1250 |
+
"step": 2070
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.13,
|
1254 |
+
"learning_rate": 9.766531230921456e-06,
|
1255 |
+
"loss": 1.1801,
|
1256 |
+
"step": 2080
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.13,
|
1260 |
+
"learning_rate": 9.764426012083957e-06,
|
1261 |
+
"loss": 1.2399,
|
1262 |
+
"step": 2090
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.13,
|
1266 |
+
"learning_rate": 9.76232079324646e-06,
|
1267 |
+
"loss": 1.2359,
|
1268 |
+
"step": 2100
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 0.13,
|
1272 |
+
"learning_rate": 9.76021557440896e-06,
|
1273 |
+
"loss": 1.2074,
|
1274 |
+
"step": 2110
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.13,
|
1278 |
+
"learning_rate": 9.758110355571463e-06,
|
1279 |
+
"loss": 1.2601,
|
1280 |
+
"step": 2120
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 0.13,
|
1284 |
+
"learning_rate": 9.756005136733965e-06,
|
1285 |
+
"loss": 1.2456,
|
1286 |
+
"step": 2130
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.13,
|
1290 |
+
"learning_rate": 9.753899917896466e-06,
|
1291 |
+
"loss": 1.2479,
|
1292 |
+
"step": 2140
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 0.13,
|
1296 |
+
"learning_rate": 9.751794699058969e-06,
|
1297 |
+
"loss": 1.2593,
|
1298 |
+
"step": 2150
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.13,
|
1302 |
+
"learning_rate": 9.749689480221471e-06,
|
1303 |
+
"loss": 1.1856,
|
1304 |
+
"step": 2160
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.13,
|
1308 |
+
"learning_rate": 9.747584261383972e-06,
|
1309 |
+
"loss": 1.2634,
|
1310 |
+
"step": 2170
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 0.13,
|
1314 |
+
"learning_rate": 9.745479042546474e-06,
|
1315 |
+
"loss": 1.2046,
|
1316 |
+
"step": 2180
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 0.14,
|
1320 |
+
"learning_rate": 9.743373823708975e-06,
|
1321 |
+
"loss": 1.2753,
|
1322 |
+
"step": 2190
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 0.14,
|
1326 |
+
"learning_rate": 9.741268604871478e-06,
|
1327 |
+
"loss": 1.2393,
|
1328 |
+
"step": 2200
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.14,
|
1332 |
+
"learning_rate": 9.739163386033979e-06,
|
1333 |
+
"loss": 1.224,
|
1334 |
+
"step": 2210
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 0.14,
|
1338 |
+
"learning_rate": 9.737058167196481e-06,
|
1339 |
+
"loss": 1.2767,
|
1340 |
+
"step": 2220
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.14,
|
1344 |
+
"learning_rate": 9.734952948358982e-06,
|
1345 |
+
"loss": 1.2584,
|
1346 |
+
"step": 2230
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.14,
|
1350 |
+
"learning_rate": 9.732847729521484e-06,
|
1351 |
+
"loss": 1.2717,
|
1352 |
+
"step": 2240
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 0.14,
|
1356 |
+
"learning_rate": 9.730742510683985e-06,
|
1357 |
+
"loss": 1.2364,
|
1358 |
+
"step": 2250
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.14,
|
1362 |
+
"learning_rate": 9.728637291846488e-06,
|
1363 |
+
"loss": 1.2354,
|
1364 |
+
"step": 2260
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 0.14,
|
1368 |
+
"learning_rate": 9.72653207300899e-06,
|
1369 |
+
"loss": 1.2347,
|
1370 |
+
"step": 2270
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.14,
|
1374 |
+
"learning_rate": 9.724426854171491e-06,
|
1375 |
+
"loss": 1.2537,
|
1376 |
+
"step": 2280
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 0.14,
|
1380 |
+
"learning_rate": 9.722321635333993e-06,
|
1381 |
+
"loss": 1.2186,
|
1382 |
+
"step": 2290
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.14,
|
1386 |
+
"learning_rate": 9.720216416496496e-06,
|
1387 |
+
"loss": 1.2351,
|
1388 |
+
"step": 2300
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.14,
|
1392 |
+
"learning_rate": 9.718111197658997e-06,
|
1393 |
+
"loss": 1.2325,
|
1394 |
+
"step": 2310
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 0.14,
|
1398 |
+
"learning_rate": 9.7160059788215e-06,
|
1399 |
+
"loss": 1.1996,
|
1400 |
+
"step": 2320
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 0.14,
|
1404 |
+
"learning_rate": 9.713900759984e-06,
|
1405 |
+
"loss": 1.2023,
|
1406 |
+
"step": 2330
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 0.14,
|
1410 |
+
"learning_rate": 9.711795541146503e-06,
|
1411 |
+
"loss": 1.2527,
|
1412 |
+
"step": 2340
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.15,
|
1416 |
+
"learning_rate": 9.709690322309005e-06,
|
1417 |
+
"loss": 1.2281,
|
1418 |
+
"step": 2350
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 0.15,
|
1422 |
+
"learning_rate": 9.707585103471506e-06,
|
1423 |
+
"loss": 1.2382,
|
1424 |
+
"step": 2360
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.15,
|
1428 |
+
"learning_rate": 9.705479884634008e-06,
|
1429 |
+
"loss": 1.2405,
|
1430 |
+
"step": 2370
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.15,
|
1434 |
+
"learning_rate": 9.70337466579651e-06,
|
1435 |
+
"loss": 1.248,
|
1436 |
+
"step": 2380
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 0.15,
|
1440 |
+
"learning_rate": 9.701269446959012e-06,
|
1441 |
+
"loss": 1.224,
|
1442 |
+
"step": 2390
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.15,
|
1446 |
+
"learning_rate": 9.699164228121514e-06,
|
1447 |
+
"loss": 1.22,
|
1448 |
+
"step": 2400
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 0.15,
|
1452 |
+
"learning_rate": 9.697059009284015e-06,
|
1453 |
+
"loss": 1.219,
|
1454 |
+
"step": 2410
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.15,
|
1458 |
+
"learning_rate": 9.694953790446517e-06,
|
1459 |
+
"loss": 1.2518,
|
1460 |
+
"step": 2420
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 0.15,
|
1464 |
+
"learning_rate": 9.69284857160902e-06,
|
1465 |
+
"loss": 1.219,
|
1466 |
+
"step": 2430
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.15,
|
1470 |
+
"learning_rate": 9.69074335277152e-06,
|
1471 |
+
"loss": 1.2168,
|
1472 |
+
"step": 2440
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.15,
|
1476 |
+
"learning_rate": 9.688638133934023e-06,
|
1477 |
+
"loss": 1.2469,
|
1478 |
+
"step": 2450
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 0.15,
|
1482 |
+
"learning_rate": 9.686532915096524e-06,
|
1483 |
+
"loss": 1.2381,
|
1484 |
+
"step": 2460
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 0.15,
|
1488 |
+
"learning_rate": 9.684427696259027e-06,
|
1489 |
+
"loss": 1.2001,
|
1490 |
+
"step": 2470
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.15,
|
1494 |
+
"learning_rate": 9.682322477421529e-06,
|
1495 |
+
"loss": 1.2004,
|
1496 |
+
"step": 2480
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.15,
|
1500 |
+
"learning_rate": 9.68021725858403e-06,
|
1501 |
+
"loss": 1.2409,
|
1502 |
+
"step": 2490
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 0.15,
|
1506 |
+
"learning_rate": 9.678112039746532e-06,
|
1507 |
+
"loss": 1.2389,
|
1508 |
+
"step": 2500
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.16,
|
1512 |
+
"learning_rate": 9.676006820909035e-06,
|
1513 |
+
"loss": 1.242,
|
1514 |
+
"step": 2510
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.16,
|
1518 |
+
"learning_rate": 9.673901602071536e-06,
|
1519 |
+
"loss": 1.2372,
|
1520 |
+
"step": 2520
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 0.16,
|
1524 |
+
"learning_rate": 9.671796383234038e-06,
|
1525 |
+
"loss": 1.2223,
|
1526 |
+
"step": 2530
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 0.16,
|
1530 |
+
"learning_rate": 9.669691164396539e-06,
|
1531 |
+
"loss": 1.2506,
|
1532 |
+
"step": 2540
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.16,
|
1536 |
+
"learning_rate": 9.667585945559041e-06,
|
1537 |
+
"loss": 1.2093,
|
1538 |
+
"step": 2550
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.16,
|
1542 |
+
"learning_rate": 9.665480726721544e-06,
|
1543 |
+
"loss": 1.2171,
|
1544 |
+
"step": 2560
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 0.16,
|
1548 |
+
"learning_rate": 9.663375507884045e-06,
|
1549 |
+
"loss": 1.2363,
|
1550 |
+
"step": 2570
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.16,
|
1554 |
+
"learning_rate": 9.661270289046547e-06,
|
1555 |
+
"loss": 1.2978,
|
1556 |
+
"step": 2580
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.16,
|
1560 |
+
"learning_rate": 9.65916507020905e-06,
|
1561 |
+
"loss": 1.2216,
|
1562 |
+
"step": 2590
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 0.16,
|
1566 |
+
"learning_rate": 9.65705985137155e-06,
|
1567 |
+
"loss": 1.1937,
|
1568 |
+
"step": 2600
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 0.16,
|
1572 |
+
"learning_rate": 9.654954632534053e-06,
|
1573 |
+
"loss": 1.2366,
|
1574 |
+
"step": 2610
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 0.16,
|
1578 |
+
"learning_rate": 9.652849413696554e-06,
|
1579 |
+
"loss": 1.2465,
|
1580 |
+
"step": 2620
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.16,
|
1584 |
+
"learning_rate": 9.650744194859056e-06,
|
1585 |
+
"loss": 1.2704,
|
1586 |
+
"step": 2630
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 0.16,
|
1590 |
+
"learning_rate": 9.648638976021559e-06,
|
1591 |
+
"loss": 1.2113,
|
1592 |
+
"step": 2640
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.16,
|
1596 |
+
"learning_rate": 9.64653375718406e-06,
|
1597 |
+
"loss": 1.2679,
|
1598 |
+
"step": 2650
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.16,
|
1602 |
+
"learning_rate": 9.644428538346562e-06,
|
1603 |
+
"loss": 1.2005,
|
1604 |
+
"step": 2660
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 0.17,
|
1608 |
+
"learning_rate": 9.642323319509063e-06,
|
1609 |
+
"loss": 1.2474,
|
1610 |
+
"step": 2670
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 0.17,
|
1614 |
+
"learning_rate": 9.640218100671565e-06,
|
1615 |
+
"loss": 1.2308,
|
1616 |
+
"step": 2680
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 0.17,
|
1620 |
+
"learning_rate": 9.638112881834068e-06,
|
1621 |
+
"loss": 1.2391,
|
1622 |
+
"step": 2690
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.17,
|
1626 |
+
"learning_rate": 9.636007662996569e-06,
|
1627 |
+
"loss": 1.1968,
|
1628 |
+
"step": 2700
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 0.17,
|
1632 |
+
"learning_rate": 9.633902444159071e-06,
|
1633 |
+
"loss": 1.2001,
|
1634 |
+
"step": 2710
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.17,
|
1638 |
+
"learning_rate": 9.631797225321574e-06,
|
1639 |
+
"loss": 1.2688,
|
1640 |
+
"step": 2720
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.17,
|
1644 |
+
"learning_rate": 9.629692006484075e-06,
|
1645 |
+
"loss": 1.2646,
|
1646 |
+
"step": 2730
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 0.17,
|
1650 |
+
"learning_rate": 9.627586787646577e-06,
|
1651 |
+
"loss": 1.2606,
|
1652 |
+
"step": 2740
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 0.17,
|
1656 |
+
"learning_rate": 9.625481568809078e-06,
|
1657 |
+
"loss": 1.1915,
|
1658 |
+
"step": 2750
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 0.17,
|
1662 |
+
"learning_rate": 9.62337634997158e-06,
|
1663 |
+
"loss": 1.204,
|
1664 |
+
"step": 2760
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 0.17,
|
1668 |
+
"learning_rate": 9.621271131134083e-06,
|
1669 |
+
"loss": 1.2128,
|
1670 |
+
"step": 2770
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 0.17,
|
1674 |
+
"learning_rate": 9.619165912296584e-06,
|
1675 |
+
"loss": 1.2116,
|
1676 |
+
"step": 2780
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.17,
|
1680 |
+
"learning_rate": 9.617060693459086e-06,
|
1681 |
+
"loss": 1.2287,
|
1682 |
+
"step": 2790
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.17,
|
1686 |
+
"learning_rate": 9.614955474621589e-06,
|
1687 |
+
"loss": 1.2443,
|
1688 |
+
"step": 2800
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 0.17,
|
1692 |
+
"learning_rate": 9.61285025578409e-06,
|
1693 |
+
"loss": 1.2926,
|
1694 |
+
"step": 2810
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 0.17,
|
1698 |
+
"learning_rate": 9.610745036946592e-06,
|
1699 |
+
"loss": 1.2195,
|
1700 |
+
"step": 2820
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 0.18,
|
1704 |
+
"learning_rate": 9.608639818109093e-06,
|
1705 |
+
"loss": 1.2345,
|
1706 |
+
"step": 2830
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.18,
|
1710 |
+
"learning_rate": 9.606534599271595e-06,
|
1711 |
+
"loss": 1.2588,
|
1712 |
+
"step": 2840
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 0.18,
|
1716 |
+
"learning_rate": 9.604429380434098e-06,
|
1717 |
+
"loss": 1.2392,
|
1718 |
+
"step": 2850
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.18,
|
1722 |
+
"learning_rate": 9.602324161596599e-06,
|
1723 |
+
"loss": 1.2529,
|
1724 |
+
"step": 2860
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.18,
|
1728 |
+
"learning_rate": 9.600218942759101e-06,
|
1729 |
+
"loss": 1.2119,
|
1730 |
+
"step": 2870
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 0.18,
|
1734 |
+
"learning_rate": 9.598113723921602e-06,
|
1735 |
+
"loss": 1.2416,
|
1736 |
+
"step": 2880
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 0.18,
|
1740 |
+
"learning_rate": 9.596008505084104e-06,
|
1741 |
+
"loss": 1.2111,
|
1742 |
+
"step": 2890
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 0.18,
|
1746 |
+
"learning_rate": 9.593903286246607e-06,
|
1747 |
+
"loss": 1.2493,
|
1748 |
+
"step": 2900
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 0.18,
|
1752 |
+
"learning_rate": 9.591798067409108e-06,
|
1753 |
+
"loss": 1.2481,
|
1754 |
+
"step": 2910
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 0.18,
|
1758 |
+
"learning_rate": 9.58969284857161e-06,
|
1759 |
+
"loss": 1.2265,
|
1760 |
+
"step": 2920
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.18,
|
1764 |
+
"learning_rate": 9.587587629734113e-06,
|
1765 |
+
"loss": 1.2549,
|
1766 |
+
"step": 2930
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.18,
|
1770 |
+
"learning_rate": 9.585482410896613e-06,
|
1771 |
+
"loss": 1.2474,
|
1772 |
+
"step": 2940
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 0.18,
|
1776 |
+
"learning_rate": 9.583377192059116e-06,
|
1777 |
+
"loss": 1.1773,
|
1778 |
+
"step": 2950
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 0.18,
|
1782 |
+
"learning_rate": 9.581271973221617e-06,
|
1783 |
+
"loss": 1.2612,
|
1784 |
+
"step": 2960
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 0.18,
|
1788 |
+
"learning_rate": 9.57916675438412e-06,
|
1789 |
+
"loss": 1.2247,
|
1790 |
+
"step": 2970
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 0.18,
|
1794 |
+
"learning_rate": 9.577061535546622e-06,
|
1795 |
+
"loss": 1.2075,
|
1796 |
+
"step": 2980
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 0.19,
|
1800 |
+
"learning_rate": 9.574956316709123e-06,
|
1801 |
+
"loss": 1.1812,
|
1802 |
+
"step": 2990
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 0.19,
|
1806 |
+
"learning_rate": 9.572851097871625e-06,
|
1807 |
+
"loss": 1.2058,
|
1808 |
+
"step": 3000
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.19,
|
1812 |
+
"learning_rate": 9.570745879034128e-06,
|
1813 |
+
"loss": 1.2781,
|
1814 |
+
"step": 3010
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 0.19,
|
1818 |
+
"learning_rate": 9.568640660196628e-06,
|
1819 |
+
"loss": 1.2572,
|
1820 |
+
"step": 3020
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.19,
|
1824 |
+
"learning_rate": 9.566535441359131e-06,
|
1825 |
+
"loss": 1.2794,
|
1826 |
+
"step": 3030
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 0.19,
|
1830 |
+
"learning_rate": 9.564430222521632e-06,
|
1831 |
+
"loss": 1.2136,
|
1832 |
+
"step": 3040
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 0.19,
|
1836 |
+
"learning_rate": 9.562325003684134e-06,
|
1837 |
+
"loss": 1.2632,
|
1838 |
+
"step": 3050
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 0.19,
|
1842 |
+
"learning_rate": 9.560219784846637e-06,
|
1843 |
+
"loss": 1.2584,
|
1844 |
+
"step": 3060
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.19,
|
1848 |
+
"learning_rate": 9.558114566009137e-06,
|
1849 |
+
"loss": 1.286,
|
1850 |
+
"step": 3070
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.19,
|
1854 |
+
"learning_rate": 9.55600934717164e-06,
|
1855 |
+
"loss": 1.247,
|
1856 |
+
"step": 3080
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 0.19,
|
1860 |
+
"learning_rate": 9.55390412833414e-06,
|
1861 |
+
"loss": 1.2715,
|
1862 |
+
"step": 3090
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.19,
|
1866 |
+
"learning_rate": 9.551798909496643e-06,
|
1867 |
+
"loss": 1.2184,
|
1868 |
+
"step": 3100
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 0.19,
|
1872 |
+
"learning_rate": 9.549693690659146e-06,
|
1873 |
+
"loss": 1.261,
|
1874 |
+
"step": 3110
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 0.19,
|
1878 |
+
"learning_rate": 9.547588471821647e-06,
|
1879 |
+
"loss": 1.2183,
|
1880 |
+
"step": 3120
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 0.19,
|
1884 |
+
"learning_rate": 9.545483252984149e-06,
|
1885 |
+
"loss": 1.1887,
|
1886 |
+
"step": 3130
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.19,
|
1890 |
+
"learning_rate": 9.543378034146652e-06,
|
1891 |
+
"loss": 1.2405,
|
1892 |
+
"step": 3140
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.19,
|
1896 |
+
"learning_rate": 9.541272815309152e-06,
|
1897 |
+
"loss": 1.2499,
|
1898 |
+
"step": 3150
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 0.2,
|
1902 |
+
"learning_rate": 9.539167596471653e-06,
|
1903 |
+
"loss": 1.2164,
|
1904 |
+
"step": 3160
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.2,
|
1908 |
+
"learning_rate": 9.537062377634156e-06,
|
1909 |
+
"loss": 1.2614,
|
1910 |
+
"step": 3170
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 0.2,
|
1914 |
+
"learning_rate": 9.534957158796657e-06,
|
1915 |
+
"loss": 1.2475,
|
1916 |
+
"step": 3180
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 0.2,
|
1920 |
+
"learning_rate": 9.532851939959159e-06,
|
1921 |
+
"loss": 1.2559,
|
1922 |
+
"step": 3190
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 0.2,
|
1926 |
+
"learning_rate": 9.530746721121662e-06,
|
1927 |
+
"loss": 1.2457,
|
1928 |
+
"step": 3200
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.2,
|
1932 |
+
"learning_rate": 9.528641502284162e-06,
|
1933 |
+
"loss": 1.2228,
|
1934 |
+
"step": 3210
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.2,
|
1938 |
+
"learning_rate": 9.526536283446665e-06,
|
1939 |
+
"loss": 1.219,
|
1940 |
+
"step": 3220
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 0.2,
|
1944 |
+
"learning_rate": 9.524431064609166e-06,
|
1945 |
+
"loss": 1.2255,
|
1946 |
+
"step": 3230
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.2,
|
1950 |
+
"learning_rate": 9.522325845771668e-06,
|
1951 |
+
"loss": 1.1923,
|
1952 |
+
"step": 3240
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 0.2,
|
1956 |
+
"learning_rate": 9.52022062693417e-06,
|
1957 |
+
"loss": 1.1996,
|
1958 |
+
"step": 3250
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 0.2,
|
1962 |
+
"learning_rate": 9.518115408096671e-06,
|
1963 |
+
"loss": 1.2186,
|
1964 |
+
"step": 3260
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 0.2,
|
1968 |
+
"learning_rate": 9.516010189259174e-06,
|
1969 |
+
"loss": 1.2384,
|
1970 |
+
"step": 3270
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.2,
|
1974 |
+
"learning_rate": 9.513904970421676e-06,
|
1975 |
+
"loss": 1.2119,
|
1976 |
+
"step": 3280
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.2,
|
1980 |
+
"learning_rate": 9.511799751584177e-06,
|
1981 |
+
"loss": 1.2455,
|
1982 |
+
"step": 3290
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 0.2,
|
1986 |
+
"learning_rate": 9.50969453274668e-06,
|
1987 |
+
"loss": 1.2314,
|
1988 |
+
"step": 3300
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.2,
|
1992 |
+
"learning_rate": 9.50758931390918e-06,
|
1993 |
+
"loss": 1.1995,
|
1994 |
+
"step": 3310
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 0.21,
|
1998 |
+
"learning_rate": 9.505484095071683e-06,
|
1999 |
+
"loss": 1.2308,
|
2000 |
+
"step": 3320
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 0.21,
|
2004 |
+
"learning_rate": 9.503378876234186e-06,
|
2005 |
+
"loss": 1.1957,
|
2006 |
+
"step": 3330
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 0.21,
|
2010 |
+
"learning_rate": 9.501273657396686e-06,
|
2011 |
+
"loss": 1.2557,
|
2012 |
+
"step": 3340
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.21,
|
2016 |
+
"learning_rate": 9.499168438559189e-06,
|
2017 |
+
"loss": 1.2351,
|
2018 |
+
"step": 3350
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.21,
|
2022 |
+
"learning_rate": 9.497063219721691e-06,
|
2023 |
+
"loss": 1.2085,
|
2024 |
+
"step": 3360
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 0.21,
|
2028 |
+
"learning_rate": 9.494958000884192e-06,
|
2029 |
+
"loss": 1.2241,
|
2030 |
+
"step": 3370
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.21,
|
2034 |
+
"learning_rate": 9.492852782046695e-06,
|
2035 |
+
"loss": 1.1909,
|
2036 |
+
"step": 3380
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 0.21,
|
2040 |
+
"learning_rate": 9.490747563209195e-06,
|
2041 |
+
"loss": 1.1886,
|
2042 |
+
"step": 3390
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 0.21,
|
2046 |
+
"learning_rate": 9.488642344371698e-06,
|
2047 |
+
"loss": 1.2161,
|
2048 |
+
"step": 3400
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 0.21,
|
2052 |
+
"learning_rate": 9.4865371255342e-06,
|
2053 |
+
"loss": 1.2718,
|
2054 |
+
"step": 3410
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.21,
|
2058 |
+
"learning_rate": 9.484431906696701e-06,
|
2059 |
+
"loss": 1.2007,
|
2060 |
+
"step": 3420
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.21,
|
2064 |
+
"learning_rate": 9.482326687859204e-06,
|
2065 |
+
"loss": 1.2038,
|
2066 |
+
"step": 3430
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 0.21,
|
2070 |
+
"learning_rate": 9.480221469021705e-06,
|
2071 |
+
"loss": 1.2153,
|
2072 |
+
"step": 3440
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.21,
|
2076 |
+
"learning_rate": 9.478116250184207e-06,
|
2077 |
+
"loss": 1.1932,
|
2078 |
+
"step": 3450
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 0.21,
|
2082 |
+
"learning_rate": 9.47601103134671e-06,
|
2083 |
+
"loss": 1.255,
|
2084 |
+
"step": 3460
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 0.21,
|
2088 |
+
"learning_rate": 9.47390581250921e-06,
|
2089 |
+
"loss": 1.2738,
|
2090 |
+
"step": 3470
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 0.22,
|
2094 |
+
"learning_rate": 9.471800593671713e-06,
|
2095 |
+
"loss": 1.2533,
|
2096 |
+
"step": 3480
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.22,
|
2100 |
+
"learning_rate": 9.469695374834215e-06,
|
2101 |
+
"loss": 1.2408,
|
2102 |
+
"step": 3490
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.22,
|
2106 |
+
"learning_rate": 9.467590155996716e-06,
|
2107 |
+
"loss": 1.2331,
|
2108 |
+
"step": 3500
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 0.22,
|
2112 |
+
"learning_rate": 9.465484937159219e-06,
|
2113 |
+
"loss": 1.2205,
|
2114 |
+
"step": 3510
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 0.22,
|
2118 |
+
"learning_rate": 9.46337971832172e-06,
|
2119 |
+
"loss": 1.2569,
|
2120 |
+
"step": 3520
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 0.22,
|
2124 |
+
"learning_rate": 9.461274499484222e-06,
|
2125 |
+
"loss": 1.2245,
|
2126 |
+
"step": 3530
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 0.22,
|
2130 |
+
"learning_rate": 9.459169280646724e-06,
|
2131 |
+
"loss": 1.2192,
|
2132 |
+
"step": 3540
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 0.22,
|
2136 |
+
"learning_rate": 9.457064061809225e-06,
|
2137 |
+
"loss": 1.2518,
|
2138 |
+
"step": 3550
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.22,
|
2142 |
+
"learning_rate": 9.454958842971728e-06,
|
2143 |
+
"loss": 1.2619,
|
2144 |
+
"step": 3560
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.22,
|
2148 |
+
"learning_rate": 9.45285362413423e-06,
|
2149 |
+
"loss": 1.1859,
|
2150 |
+
"step": 3570
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 0.22,
|
2154 |
+
"learning_rate": 9.450748405296731e-06,
|
2155 |
+
"loss": 1.2216,
|
2156 |
+
"step": 3580
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 0.22,
|
2160 |
+
"learning_rate": 9.448643186459234e-06,
|
2161 |
+
"loss": 1.221,
|
2162 |
+
"step": 3590
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 0.22,
|
2166 |
+
"learning_rate": 9.446537967621734e-06,
|
2167 |
+
"loss": 1.2224,
|
2168 |
+
"step": 3600
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 0.22,
|
2172 |
+
"learning_rate": 9.444432748784237e-06,
|
2173 |
+
"loss": 1.2324,
|
2174 |
+
"step": 3610
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 0.22,
|
2178 |
+
"learning_rate": 9.44232752994674e-06,
|
2179 |
+
"loss": 1.1747,
|
2180 |
+
"step": 3620
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.22,
|
2184 |
+
"learning_rate": 9.44022231110924e-06,
|
2185 |
+
"loss": 1.1962,
|
2186 |
+
"step": 3630
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.23,
|
2190 |
+
"learning_rate": 9.438117092271743e-06,
|
2191 |
+
"loss": 1.2235,
|
2192 |
+
"step": 3640
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 0.23,
|
2196 |
+
"learning_rate": 9.436011873434245e-06,
|
2197 |
+
"loss": 1.2081,
|
2198 |
+
"step": 3650
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 0.23,
|
2202 |
+
"learning_rate": 9.433906654596746e-06,
|
2203 |
+
"loss": 1.2398,
|
2204 |
+
"step": 3660
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 0.23,
|
2208 |
+
"learning_rate": 9.431801435759248e-06,
|
2209 |
+
"loss": 1.248,
|
2210 |
+
"step": 3670
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 0.23,
|
2214 |
+
"learning_rate": 9.42969621692175e-06,
|
2215 |
+
"loss": 1.1936,
|
2216 |
+
"step": 3680
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 0.23,
|
2220 |
+
"learning_rate": 9.427590998084252e-06,
|
2221 |
+
"loss": 1.2317,
|
2222 |
+
"step": 3690
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 0.23,
|
2226 |
+
"learning_rate": 9.425485779246754e-06,
|
2227 |
+
"loss": 1.2139,
|
2228 |
+
"step": 3700
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.23,
|
2232 |
+
"learning_rate": 9.423380560409255e-06,
|
2233 |
+
"loss": 1.1601,
|
2234 |
+
"step": 3710
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 0.23,
|
2238 |
+
"learning_rate": 9.421275341571758e-06,
|
2239 |
+
"loss": 1.2127,
|
2240 |
+
"step": 3720
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 0.23,
|
2244 |
+
"learning_rate": 9.419170122734258e-06,
|
2245 |
+
"loss": 1.2082,
|
2246 |
+
"step": 3730
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 0.23,
|
2250 |
+
"learning_rate": 9.41706490389676e-06,
|
2251 |
+
"loss": 1.1971,
|
2252 |
+
"step": 3740
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 0.23,
|
2256 |
+
"learning_rate": 9.414959685059263e-06,
|
2257 |
+
"loss": 1.2289,
|
2258 |
+
"step": 3750
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 0.23,
|
2262 |
+
"learning_rate": 9.412854466221764e-06,
|
2263 |
+
"loss": 1.2133,
|
2264 |
+
"step": 3760
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 0.23,
|
2268 |
+
"learning_rate": 9.410749247384267e-06,
|
2269 |
+
"loss": 1.2111,
|
2270 |
+
"step": 3770
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.23,
|
2274 |
+
"learning_rate": 9.408644028546769e-06,
|
2275 |
+
"loss": 1.2342,
|
2276 |
+
"step": 3780
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 0.23,
|
2280 |
+
"learning_rate": 9.40653880970927e-06,
|
2281 |
+
"loss": 1.217,
|
2282 |
+
"step": 3790
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 0.24,
|
2286 |
+
"learning_rate": 9.404433590871772e-06,
|
2287 |
+
"loss": 1.2651,
|
2288 |
+
"step": 3800
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 0.24,
|
2292 |
+
"learning_rate": 9.402328372034273e-06,
|
2293 |
+
"loss": 1.2259,
|
2294 |
+
"step": 3810
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 0.24,
|
2298 |
+
"learning_rate": 9.400223153196776e-06,
|
2299 |
+
"loss": 1.2434,
|
2300 |
+
"step": 3820
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 0.24,
|
2304 |
+
"learning_rate": 9.398117934359278e-06,
|
2305 |
+
"loss": 1.2199,
|
2306 |
+
"step": 3830
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 0.24,
|
2310 |
+
"learning_rate": 9.396012715521779e-06,
|
2311 |
+
"loss": 1.2299,
|
2312 |
+
"step": 3840
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.24,
|
2316 |
+
"learning_rate": 9.393907496684282e-06,
|
2317 |
+
"loss": 1.2156,
|
2318 |
+
"step": 3850
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 0.24,
|
2322 |
+
"learning_rate": 9.391802277846784e-06,
|
2323 |
+
"loss": 1.2402,
|
2324 |
+
"step": 3860
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 0.24,
|
2328 |
+
"learning_rate": 9.389697059009285e-06,
|
2329 |
+
"loss": 1.237,
|
2330 |
+
"step": 3870
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 0.24,
|
2334 |
+
"learning_rate": 9.387591840171787e-06,
|
2335 |
+
"loss": 1.2141,
|
2336 |
+
"step": 3880
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 0.24,
|
2340 |
+
"learning_rate": 9.385486621334288e-06,
|
2341 |
+
"loss": 1.2253,
|
2342 |
+
"step": 3890
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 0.24,
|
2346 |
+
"learning_rate": 9.38338140249679e-06,
|
2347 |
+
"loss": 1.217,
|
2348 |
+
"step": 3900
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 0.24,
|
2352 |
+
"learning_rate": 9.381276183659293e-06,
|
2353 |
+
"loss": 1.1919,
|
2354 |
+
"step": 3910
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.24,
|
2358 |
+
"learning_rate": 9.379170964821794e-06,
|
2359 |
+
"loss": 1.1663,
|
2360 |
+
"step": 3920
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 0.24,
|
2364 |
+
"learning_rate": 9.377065745984296e-06,
|
2365 |
+
"loss": 1.2338,
|
2366 |
+
"step": 3930
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 0.24,
|
2370 |
+
"learning_rate": 9.374960527146797e-06,
|
2371 |
+
"loss": 1.2399,
|
2372 |
+
"step": 3940
|
2373 |
+
},
|
2374 |
+
{
|
2375 |
+
"epoch": 0.24,
|
2376 |
+
"learning_rate": 9.3728553083093e-06,
|
2377 |
+
"loss": 1.1608,
|
2378 |
+
"step": 3950
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 0.25,
|
2382 |
+
"learning_rate": 9.370750089471802e-06,
|
2383 |
+
"loss": 1.1752,
|
2384 |
+
"step": 3960
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 0.25,
|
2388 |
+
"learning_rate": 9.368644870634303e-06,
|
2389 |
+
"loss": 1.2364,
|
2390 |
+
"step": 3970
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 0.25,
|
2394 |
+
"learning_rate": 9.366539651796806e-06,
|
2395 |
+
"loss": 1.2053,
|
2396 |
+
"step": 3980
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.25,
|
2400 |
+
"learning_rate": 9.364434432959308e-06,
|
2401 |
+
"loss": 1.2431,
|
2402 |
+
"step": 3990
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 0.25,
|
2406 |
+
"learning_rate": 9.362329214121809e-06,
|
2407 |
+
"loss": 1.1948,
|
2408 |
+
"step": 4000
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 0.25,
|
2412 |
+
"learning_rate": 9.360223995284311e-06,
|
2413 |
+
"loss": 1.2248,
|
2414 |
+
"step": 4010
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 0.25,
|
2418 |
+
"learning_rate": 9.358118776446812e-06,
|
2419 |
+
"loss": 1.2057,
|
2420 |
+
"step": 4020
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 0.25,
|
2424 |
+
"learning_rate": 9.356013557609315e-06,
|
2425 |
+
"loss": 1.2373,
|
2426 |
+
"step": 4030
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 0.25,
|
2430 |
+
"learning_rate": 9.353908338771817e-06,
|
2431 |
+
"loss": 1.1993,
|
2432 |
+
"step": 4040
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 0.25,
|
2436 |
+
"learning_rate": 9.351803119934318e-06,
|
2437 |
+
"loss": 1.1474,
|
2438 |
+
"step": 4050
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.25,
|
2442 |
+
"learning_rate": 9.34969790109682e-06,
|
2443 |
+
"loss": 1.2084,
|
2444 |
+
"step": 4060
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 0.25,
|
2448 |
+
"learning_rate": 9.347592682259323e-06,
|
2449 |
+
"loss": 1.224,
|
2450 |
+
"step": 4070
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 0.25,
|
2454 |
+
"learning_rate": 9.345487463421824e-06,
|
2455 |
+
"loss": 1.206,
|
2456 |
+
"step": 4080
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 0.25,
|
2460 |
+
"learning_rate": 9.343382244584326e-06,
|
2461 |
+
"loss": 1.2225,
|
2462 |
+
"step": 4090
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 0.25,
|
2466 |
+
"learning_rate": 9.341277025746827e-06,
|
2467 |
+
"loss": 1.2189,
|
2468 |
+
"step": 4100
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 0.25,
|
2472 |
+
"learning_rate": 9.339171806909328e-06,
|
2473 |
+
"loss": 1.25,
|
2474 |
+
"step": 4110
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 0.25,
|
2478 |
+
"learning_rate": 9.33706658807183e-06,
|
2479 |
+
"loss": 1.251,
|
2480 |
+
"step": 4120
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.26,
|
2484 |
+
"learning_rate": 9.334961369234333e-06,
|
2485 |
+
"loss": 1.2048,
|
2486 |
+
"step": 4130
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 0.26,
|
2490 |
+
"learning_rate": 9.332856150396834e-06,
|
2491 |
+
"loss": 1.2369,
|
2492 |
+
"step": 4140
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 0.26,
|
2496 |
+
"learning_rate": 9.330750931559336e-06,
|
2497 |
+
"loss": 1.2427,
|
2498 |
+
"step": 4150
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 0.26,
|
2502 |
+
"learning_rate": 9.328645712721837e-06,
|
2503 |
+
"loss": 1.2873,
|
2504 |
+
"step": 4160
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 0.26,
|
2508 |
+
"learning_rate": 9.32654049388434e-06,
|
2509 |
+
"loss": 1.1579,
|
2510 |
+
"step": 4170
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 0.26,
|
2514 |
+
"learning_rate": 9.324435275046842e-06,
|
2515 |
+
"loss": 1.2025,
|
2516 |
+
"step": 4180
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 0.26,
|
2520 |
+
"learning_rate": 9.322330056209343e-06,
|
2521 |
+
"loss": 1.209,
|
2522 |
+
"step": 4190
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.26,
|
2526 |
+
"learning_rate": 9.320224837371845e-06,
|
2527 |
+
"loss": 1.2015,
|
2528 |
+
"step": 4200
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 0.26,
|
2532 |
+
"learning_rate": 9.318119618534348e-06,
|
2533 |
+
"loss": 1.2509,
|
2534 |
+
"step": 4210
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 0.26,
|
2538 |
+
"learning_rate": 9.316014399696849e-06,
|
2539 |
+
"loss": 1.2696,
|
2540 |
+
"step": 4220
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 0.26,
|
2544 |
+
"learning_rate": 9.313909180859351e-06,
|
2545 |
+
"loss": 1.2281,
|
2546 |
+
"step": 4230
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 0.26,
|
2550 |
+
"learning_rate": 9.311803962021852e-06,
|
2551 |
+
"loss": 1.2089,
|
2552 |
+
"step": 4240
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 0.26,
|
2556 |
+
"learning_rate": 9.309698743184354e-06,
|
2557 |
+
"loss": 1.2831,
|
2558 |
+
"step": 4250
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 0.26,
|
2562 |
+
"learning_rate": 9.307593524346857e-06,
|
2563 |
+
"loss": 1.2757,
|
2564 |
+
"step": 4260
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.26,
|
2568 |
+
"learning_rate": 9.305488305509358e-06,
|
2569 |
+
"loss": 1.2267,
|
2570 |
+
"step": 4270
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 0.26,
|
2574 |
+
"learning_rate": 9.30338308667186e-06,
|
2575 |
+
"loss": 1.1837,
|
2576 |
+
"step": 4280
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 0.27,
|
2580 |
+
"learning_rate": 9.301277867834361e-06,
|
2581 |
+
"loss": 1.2245,
|
2582 |
+
"step": 4290
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 0.27,
|
2586 |
+
"learning_rate": 9.299172648996863e-06,
|
2587 |
+
"loss": 1.157,
|
2588 |
+
"step": 4300
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 0.27,
|
2592 |
+
"learning_rate": 9.297067430159366e-06,
|
2593 |
+
"loss": 1.215,
|
2594 |
+
"step": 4310
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 0.27,
|
2598 |
+
"learning_rate": 9.294962211321867e-06,
|
2599 |
+
"loss": 1.2421,
|
2600 |
+
"step": 4320
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 0.27,
|
2604 |
+
"learning_rate": 9.29285699248437e-06,
|
2605 |
+
"loss": 1.2581,
|
2606 |
+
"step": 4330
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.27,
|
2610 |
+
"learning_rate": 9.290751773646872e-06,
|
2611 |
+
"loss": 1.1966,
|
2612 |
+
"step": 4340
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 0.27,
|
2616 |
+
"learning_rate": 9.288646554809373e-06,
|
2617 |
+
"loss": 1.2494,
|
2618 |
+
"step": 4350
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 0.27,
|
2622 |
+
"learning_rate": 9.286541335971875e-06,
|
2623 |
+
"loss": 1.1633,
|
2624 |
+
"step": 4360
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 0.27,
|
2628 |
+
"learning_rate": 9.284436117134376e-06,
|
2629 |
+
"loss": 1.2258,
|
2630 |
+
"step": 4370
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 0.27,
|
2634 |
+
"learning_rate": 9.282330898296878e-06,
|
2635 |
+
"loss": 1.2703,
|
2636 |
+
"step": 4380
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 0.27,
|
2640 |
+
"learning_rate": 9.280225679459381e-06,
|
2641 |
+
"loss": 1.1973,
|
2642 |
+
"step": 4390
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 0.27,
|
2646 |
+
"learning_rate": 9.278120460621882e-06,
|
2647 |
+
"loss": 1.2614,
|
2648 |
+
"step": 4400
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.27,
|
2652 |
+
"learning_rate": 9.276015241784384e-06,
|
2653 |
+
"loss": 1.243,
|
2654 |
+
"step": 4410
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 0.27,
|
2658 |
+
"learning_rate": 9.273910022946887e-06,
|
2659 |
+
"loss": 1.2473,
|
2660 |
+
"step": 4420
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 0.27,
|
2664 |
+
"learning_rate": 9.271804804109387e-06,
|
2665 |
+
"loss": 1.2269,
|
2666 |
+
"step": 4430
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 0.27,
|
2670 |
+
"learning_rate": 9.26969958527189e-06,
|
2671 |
+
"loss": 1.2466,
|
2672 |
+
"step": 4440
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 0.28,
|
2676 |
+
"learning_rate": 9.26759436643439e-06,
|
2677 |
+
"loss": 1.2362,
|
2678 |
+
"step": 4450
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 0.28,
|
2682 |
+
"learning_rate": 9.265489147596893e-06,
|
2683 |
+
"loss": 1.2277,
|
2684 |
+
"step": 4460
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 0.28,
|
2688 |
+
"learning_rate": 9.263383928759396e-06,
|
2689 |
+
"loss": 1.1939,
|
2690 |
+
"step": 4470
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.28,
|
2694 |
+
"learning_rate": 9.261278709921897e-06,
|
2695 |
+
"loss": 1.2013,
|
2696 |
+
"step": 4480
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 0.28,
|
2700 |
+
"learning_rate": 9.259173491084399e-06,
|
2701 |
+
"loss": 1.2057,
|
2702 |
+
"step": 4490
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 0.28,
|
2706 |
+
"learning_rate": 9.257068272246902e-06,
|
2707 |
+
"loss": 1.2276,
|
2708 |
+
"step": 4500
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 0.28,
|
2712 |
+
"learning_rate": 9.254963053409402e-06,
|
2713 |
+
"loss": 1.2029,
|
2714 |
+
"step": 4510
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 0.28,
|
2718 |
+
"learning_rate": 9.252857834571905e-06,
|
2719 |
+
"loss": 1.2285,
|
2720 |
+
"step": 4520
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 0.28,
|
2724 |
+
"learning_rate": 9.250752615734406e-06,
|
2725 |
+
"loss": 1.2078,
|
2726 |
+
"step": 4530
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 0.28,
|
2730 |
+
"learning_rate": 9.248647396896908e-06,
|
2731 |
+
"loss": 1.2317,
|
2732 |
+
"step": 4540
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.28,
|
2736 |
+
"learning_rate": 9.24654217805941e-06,
|
2737 |
+
"loss": 1.2266,
|
2738 |
+
"step": 4550
|
2739 |
+
},
|
2740 |
+
{
|
2741 |
+
"epoch": 0.28,
|
2742 |
+
"learning_rate": 9.244436959221911e-06,
|
2743 |
+
"loss": 1.212,
|
2744 |
+
"step": 4560
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"epoch": 0.28,
|
2748 |
+
"learning_rate": 9.242331740384414e-06,
|
2749 |
+
"loss": 1.1849,
|
2750 |
+
"step": 4570
|
2751 |
+
},
|
2752 |
+
{
|
2753 |
+
"epoch": 0.28,
|
2754 |
+
"learning_rate": 9.240226521546915e-06,
|
2755 |
+
"loss": 1.2238,
|
2756 |
+
"step": 4580
|
2757 |
+
},
|
2758 |
+
{
|
2759 |
+
"epoch": 0.28,
|
2760 |
+
"learning_rate": 9.238121302709417e-06,
|
2761 |
+
"loss": 1.221,
|
2762 |
+
"step": 4590
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 0.28,
|
2766 |
+
"learning_rate": 9.23601608387192e-06,
|
2767 |
+
"loss": 1.2356,
|
2768 |
+
"step": 4600
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 0.29,
|
2772 |
+
"learning_rate": 9.23391086503442e-06,
|
2773 |
+
"loss": 1.2287,
|
2774 |
+
"step": 4610
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.29,
|
2778 |
+
"learning_rate": 9.231805646196923e-06,
|
2779 |
+
"loss": 1.2226,
|
2780 |
+
"step": 4620
|
2781 |
+
},
|
2782 |
+
{
|
2783 |
+
"epoch": 0.29,
|
2784 |
+
"learning_rate": 9.229700427359426e-06,
|
2785 |
+
"loss": 1.159,
|
2786 |
+
"step": 4630
|
2787 |
+
},
|
2788 |
+
{
|
2789 |
+
"epoch": 0.29,
|
2790 |
+
"learning_rate": 9.227595208521926e-06,
|
2791 |
+
"loss": 1.2239,
|
2792 |
+
"step": 4640
|
2793 |
+
},
|
2794 |
+
{
|
2795 |
+
"epoch": 0.29,
|
2796 |
+
"learning_rate": 9.225489989684429e-06,
|
2797 |
+
"loss": 1.2547,
|
2798 |
+
"step": 4650
|
2799 |
+
},
|
2800 |
+
{
|
2801 |
+
"epoch": 0.29,
|
2802 |
+
"learning_rate": 9.22338477084693e-06,
|
2803 |
+
"loss": 1.1689,
|
2804 |
+
"step": 4660
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 0.29,
|
2808 |
+
"learning_rate": 9.221279552009432e-06,
|
2809 |
+
"loss": 1.1546,
|
2810 |
+
"step": 4670
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 0.29,
|
2814 |
+
"learning_rate": 9.219174333171935e-06,
|
2815 |
+
"loss": 1.2197,
|
2816 |
+
"step": 4680
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.29,
|
2820 |
+
"learning_rate": 9.217069114334436e-06,
|
2821 |
+
"loss": 1.1826,
|
2822 |
+
"step": 4690
|
2823 |
+
},
|
2824 |
+
{
|
2825 |
+
"epoch": 0.29,
|
2826 |
+
"learning_rate": 9.214963895496938e-06,
|
2827 |
+
"loss": 1.2543,
|
2828 |
+
"step": 4700
|
2829 |
+
},
|
2830 |
+
{
|
2831 |
+
"epoch": 0.29,
|
2832 |
+
"learning_rate": 9.21285867665944e-06,
|
2833 |
+
"loss": 1.1747,
|
2834 |
+
"step": 4710
|
2835 |
+
},
|
2836 |
+
{
|
2837 |
+
"epoch": 0.29,
|
2838 |
+
"learning_rate": 9.210753457821941e-06,
|
2839 |
+
"loss": 1.2486,
|
2840 |
+
"step": 4720
|
2841 |
+
},
|
2842 |
+
{
|
2843 |
+
"epoch": 0.29,
|
2844 |
+
"learning_rate": 9.208648238984444e-06,
|
2845 |
+
"loss": 1.2506,
|
2846 |
+
"step": 4730
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 0.29,
|
2850 |
+
"learning_rate": 9.206543020146945e-06,
|
2851 |
+
"loss": 1.2257,
|
2852 |
+
"step": 4740
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 0.29,
|
2856 |
+
"learning_rate": 9.204437801309447e-06,
|
2857 |
+
"loss": 1.183,
|
2858 |
+
"step": 4750
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.29,
|
2862 |
+
"learning_rate": 9.20233258247195e-06,
|
2863 |
+
"loss": 1.2092,
|
2864 |
+
"step": 4760
|
2865 |
+
},
|
2866 |
+
{
|
2867 |
+
"epoch": 0.3,
|
2868 |
+
"learning_rate": 9.20022736363445e-06,
|
2869 |
+
"loss": 1.1907,
|
2870 |
+
"step": 4770
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 0.3,
|
2874 |
+
"learning_rate": 9.198122144796953e-06,
|
2875 |
+
"loss": 1.1898,
|
2876 |
+
"step": 4780
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 0.3,
|
2880 |
+
"learning_rate": 9.196016925959454e-06,
|
2881 |
+
"loss": 1.1834,
|
2882 |
+
"step": 4790
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 0.3,
|
2886 |
+
"learning_rate": 9.193911707121956e-06,
|
2887 |
+
"loss": 1.2316,
|
2888 |
+
"step": 4800
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 0.3,
|
2892 |
+
"learning_rate": 9.191806488284459e-06,
|
2893 |
+
"loss": 1.2018,
|
2894 |
+
"step": 4810
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 0.3,
|
2898 |
+
"learning_rate": 9.18970126944696e-06,
|
2899 |
+
"loss": 1.2066,
|
2900 |
+
"step": 4820
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.3,
|
2904 |
+
"learning_rate": 9.187596050609462e-06,
|
2905 |
+
"loss": 1.182,
|
2906 |
+
"step": 4830
|
2907 |
+
},
|
2908 |
+
{
|
2909 |
+
"epoch": 0.3,
|
2910 |
+
"learning_rate": 9.185490831771965e-06,
|
2911 |
+
"loss": 1.2089,
|
2912 |
+
"step": 4840
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 0.3,
|
2916 |
+
"learning_rate": 9.183385612934465e-06,
|
2917 |
+
"loss": 1.1919,
|
2918 |
+
"step": 4850
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 0.3,
|
2922 |
+
"learning_rate": 9.181280394096968e-06,
|
2923 |
+
"loss": 1.2734,
|
2924 |
+
"step": 4860
|
2925 |
+
},
|
2926 |
+
{
|
2927 |
+
"epoch": 0.3,
|
2928 |
+
"learning_rate": 9.179175175259469e-06,
|
2929 |
+
"loss": 1.25,
|
2930 |
+
"step": 4870
|
2931 |
+
},
|
2932 |
+
{
|
2933 |
+
"epoch": 0.3,
|
2934 |
+
"learning_rate": 9.177069956421971e-06,
|
2935 |
+
"loss": 1.213,
|
2936 |
+
"step": 4880
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 0.3,
|
2940 |
+
"learning_rate": 9.174964737584474e-06,
|
2941 |
+
"loss": 1.2126,
|
2942 |
+
"step": 4890
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.3,
|
2946 |
+
"learning_rate": 9.172859518746974e-06,
|
2947 |
+
"loss": 1.203,
|
2948 |
+
"step": 4900
|
2949 |
+
},
|
2950 |
+
{
|
2951 |
+
"epoch": 0.3,
|
2952 |
+
"learning_rate": 9.170754299909477e-06,
|
2953 |
+
"loss": 1.2718,
|
2954 |
+
"step": 4910
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 0.3,
|
2958 |
+
"learning_rate": 9.16864908107198e-06,
|
2959 |
+
"loss": 1.1845,
|
2960 |
+
"step": 4920
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"epoch": 0.31,
|
2964 |
+
"learning_rate": 9.16654386223448e-06,
|
2965 |
+
"loss": 1.1991,
|
2966 |
+
"step": 4930
|
2967 |
+
},
|
2968 |
+
{
|
2969 |
+
"epoch": 0.31,
|
2970 |
+
"learning_rate": 9.164438643396983e-06,
|
2971 |
+
"loss": 1.2049,
|
2972 |
+
"step": 4940
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"epoch": 0.31,
|
2976 |
+
"learning_rate": 9.162333424559484e-06,
|
2977 |
+
"loss": 1.2345,
|
2978 |
+
"step": 4950
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 0.31,
|
2982 |
+
"learning_rate": 9.160228205721986e-06,
|
2983 |
+
"loss": 1.2284,
|
2984 |
+
"step": 4960
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.31,
|
2988 |
+
"learning_rate": 9.158122986884489e-06,
|
2989 |
+
"loss": 1.2253,
|
2990 |
+
"step": 4970
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 0.31,
|
2994 |
+
"learning_rate": 9.15601776804699e-06,
|
2995 |
+
"loss": 1.2038,
|
2996 |
+
"step": 4980
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 0.31,
|
3000 |
+
"learning_rate": 9.153912549209492e-06,
|
3001 |
+
"loss": 1.2353,
|
3002 |
+
"step": 4990
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 0.31,
|
3006 |
+
"learning_rate": 9.151807330371993e-06,
|
3007 |
+
"loss": 1.2029,
|
3008 |
+
"step": 5000
|
3009 |
+
},
|
3010 |
+
{
|
3011 |
+
"epoch": 0.31,
|
3012 |
+
"learning_rate": 9.149702111534495e-06,
|
3013 |
+
"loss": 1.1451,
|
3014 |
+
"step": 5010
|
3015 |
+
},
|
3016 |
+
{
|
3017 |
+
"epoch": 0.31,
|
3018 |
+
"learning_rate": 9.147596892696998e-06,
|
3019 |
+
"loss": 1.186,
|
3020 |
+
"step": 5020
|
3021 |
+
},
|
3022 |
+
{
|
3023 |
+
"epoch": 0.31,
|
3024 |
+
"learning_rate": 9.145491673859498e-06,
|
3025 |
+
"loss": 1.2406,
|
3026 |
+
"step": 5030
|
3027 |
+
},
|
3028 |
+
{
|
3029 |
+
"epoch": 0.31,
|
3030 |
+
"learning_rate": 9.143386455022e-06,
|
3031 |
+
"loss": 1.1957,
|
3032 |
+
"step": 5040
|
3033 |
+
},
|
3034 |
+
{
|
3035 |
+
"epoch": 0.31,
|
3036 |
+
"learning_rate": 9.141281236184502e-06,
|
3037 |
+
"loss": 1.19,
|
3038 |
+
"step": 5050
|
3039 |
+
},
|
3040 |
+
{
|
3041 |
+
"epoch": 0.31,
|
3042 |
+
"learning_rate": 9.139176017347004e-06,
|
3043 |
+
"loss": 1.2007,
|
3044 |
+
"step": 5060
|
3045 |
+
},
|
3046 |
+
{
|
3047 |
+
"epoch": 0.31,
|
3048 |
+
"learning_rate": 9.137070798509505e-06,
|
3049 |
+
"loss": 1.2259,
|
3050 |
+
"step": 5070
|
3051 |
+
},
|
3052 |
+
{
|
3053 |
+
"epoch": 0.31,
|
3054 |
+
"learning_rate": 9.134965579672008e-06,
|
3055 |
+
"loss": 1.2204,
|
3056 |
+
"step": 5080
|
3057 |
+
},
|
3058 |
+
{
|
3059 |
+
"epoch": 0.32,
|
3060 |
+
"learning_rate": 9.132860360834508e-06,
|
3061 |
+
"loss": 1.2021,
|
3062 |
+
"step": 5090
|
3063 |
+
},
|
3064 |
+
{
|
3065 |
+
"epoch": 0.32,
|
3066 |
+
"learning_rate": 9.13075514199701e-06,
|
3067 |
+
"loss": 1.2208,
|
3068 |
+
"step": 5100
|
3069 |
+
},
|
3070 |
+
{
|
3071 |
+
"epoch": 0.32,
|
3072 |
+
"learning_rate": 9.128649923159513e-06,
|
3073 |
+
"loss": 1.1702,
|
3074 |
+
"step": 5110
|
3075 |
+
},
|
3076 |
+
{
|
3077 |
+
"epoch": 0.32,
|
3078 |
+
"learning_rate": 9.126544704322014e-06,
|
3079 |
+
"loss": 1.2513,
|
3080 |
+
"step": 5120
|
3081 |
+
},
|
3082 |
+
{
|
3083 |
+
"epoch": 0.32,
|
3084 |
+
"learning_rate": 9.124439485484517e-06,
|
3085 |
+
"loss": 1.1855,
|
3086 |
+
"step": 5130
|
3087 |
+
},
|
3088 |
+
{
|
3089 |
+
"epoch": 0.32,
|
3090 |
+
"learning_rate": 9.122334266647017e-06,
|
3091 |
+
"loss": 1.1868,
|
3092 |
+
"step": 5140
|
3093 |
+
},
|
3094 |
+
{
|
3095 |
+
"epoch": 0.32,
|
3096 |
+
"learning_rate": 9.12022904780952e-06,
|
3097 |
+
"loss": 1.1861,
|
3098 |
+
"step": 5150
|
3099 |
+
},
|
3100 |
+
{
|
3101 |
+
"epoch": 0.32,
|
3102 |
+
"learning_rate": 9.118123828972022e-06,
|
3103 |
+
"loss": 1.184,
|
3104 |
+
"step": 5160
|
3105 |
+
},
|
3106 |
+
{
|
3107 |
+
"epoch": 0.32,
|
3108 |
+
"learning_rate": 9.116018610134523e-06,
|
3109 |
+
"loss": 1.2227,
|
3110 |
+
"step": 5170
|
3111 |
+
},
|
3112 |
+
{
|
3113 |
+
"epoch": 0.32,
|
3114 |
+
"learning_rate": 9.113913391297026e-06,
|
3115 |
+
"loss": 1.1739,
|
3116 |
+
"step": 5180
|
3117 |
+
},
|
3118 |
+
{
|
3119 |
+
"epoch": 0.32,
|
3120 |
+
"learning_rate": 9.111808172459528e-06,
|
3121 |
+
"loss": 1.1705,
|
3122 |
+
"step": 5190
|
3123 |
+
},
|
3124 |
+
{
|
3125 |
+
"epoch": 0.32,
|
3126 |
+
"learning_rate": 9.109702953622029e-06,
|
3127 |
+
"loss": 1.1681,
|
3128 |
+
"step": 5200
|
3129 |
+
},
|
3130 |
+
{
|
3131 |
+
"epoch": 0.32,
|
3132 |
+
"learning_rate": 9.107597734784532e-06,
|
3133 |
+
"loss": 1.2116,
|
3134 |
+
"step": 5210
|
3135 |
+
},
|
3136 |
+
{
|
3137 |
+
"epoch": 0.32,
|
3138 |
+
"learning_rate": 9.105492515947032e-06,
|
3139 |
+
"loss": 1.2158,
|
3140 |
+
"step": 5220
|
3141 |
+
},
|
3142 |
+
{
|
3143 |
+
"epoch": 0.32,
|
3144 |
+
"learning_rate": 9.103387297109535e-06,
|
3145 |
+
"loss": 1.1452,
|
3146 |
+
"step": 5230
|
3147 |
+
},
|
3148 |
+
{
|
3149 |
+
"epoch": 0.32,
|
3150 |
+
"learning_rate": 9.101282078272037e-06,
|
3151 |
+
"loss": 1.1695,
|
3152 |
+
"step": 5240
|
3153 |
+
},
|
3154 |
+
{
|
3155 |
+
"epoch": 0.32,
|
3156 |
+
"learning_rate": 9.099176859434538e-06,
|
3157 |
+
"loss": 1.2099,
|
3158 |
+
"step": 5250
|
3159 |
+
},
|
3160 |
+
{
|
3161 |
+
"epoch": 0.33,
|
3162 |
+
"learning_rate": 9.09707164059704e-06,
|
3163 |
+
"loss": 1.2359,
|
3164 |
+
"step": 5260
|
3165 |
+
},
|
3166 |
+
{
|
3167 |
+
"epoch": 0.33,
|
3168 |
+
"learning_rate": 9.094966421759543e-06,
|
3169 |
+
"loss": 1.207,
|
3170 |
+
"step": 5270
|
3171 |
+
},
|
3172 |
+
{
|
3173 |
+
"epoch": 0.33,
|
3174 |
+
"learning_rate": 9.092861202922044e-06,
|
3175 |
+
"loss": 1.2119,
|
3176 |
+
"step": 5280
|
3177 |
+
},
|
3178 |
+
{
|
3179 |
+
"epoch": 0.33,
|
3180 |
+
"learning_rate": 9.090755984084546e-06,
|
3181 |
+
"loss": 1.1408,
|
3182 |
+
"step": 5290
|
3183 |
+
},
|
3184 |
+
{
|
3185 |
+
"epoch": 0.33,
|
3186 |
+
"learning_rate": 9.088650765247047e-06,
|
3187 |
+
"loss": 1.1842,
|
3188 |
+
"step": 5300
|
3189 |
+
},
|
3190 |
+
{
|
3191 |
+
"epoch": 0.33,
|
3192 |
+
"learning_rate": 9.08654554640955e-06,
|
3193 |
+
"loss": 1.1786,
|
3194 |
+
"step": 5310
|
3195 |
+
},
|
3196 |
+
{
|
3197 |
+
"epoch": 0.33,
|
3198 |
+
"learning_rate": 9.084440327572052e-06,
|
3199 |
+
"loss": 1.2016,
|
3200 |
+
"step": 5320
|
3201 |
+
},
|
3202 |
+
{
|
3203 |
+
"epoch": 0.33,
|
3204 |
+
"learning_rate": 9.082335108734553e-06,
|
3205 |
+
"loss": 1.2011,
|
3206 |
+
"step": 5330
|
3207 |
+
},
|
3208 |
+
{
|
3209 |
+
"epoch": 0.33,
|
3210 |
+
"learning_rate": 9.080229889897056e-06,
|
3211 |
+
"loss": 1.235,
|
3212 |
+
"step": 5340
|
3213 |
+
},
|
3214 |
+
{
|
3215 |
+
"epoch": 0.33,
|
3216 |
+
"learning_rate": 9.078124671059556e-06,
|
3217 |
+
"loss": 1.2116,
|
3218 |
+
"step": 5350
|
3219 |
+
},
|
3220 |
+
{
|
3221 |
+
"epoch": 0.33,
|
3222 |
+
"learning_rate": 9.076019452222059e-06,
|
3223 |
+
"loss": 1.2083,
|
3224 |
+
"step": 5360
|
3225 |
+
},
|
3226 |
+
{
|
3227 |
+
"epoch": 0.33,
|
3228 |
+
"learning_rate": 9.073914233384561e-06,
|
3229 |
+
"loss": 1.2152,
|
3230 |
+
"step": 5370
|
3231 |
+
},
|
3232 |
+
{
|
3233 |
+
"epoch": 0.33,
|
3234 |
+
"learning_rate": 9.071809014547062e-06,
|
3235 |
+
"loss": 1.239,
|
3236 |
+
"step": 5380
|
3237 |
+
},
|
3238 |
+
{
|
3239 |
+
"epoch": 0.33,
|
3240 |
+
"learning_rate": 9.069703795709565e-06,
|
3241 |
+
"loss": 1.1989,
|
3242 |
+
"step": 5390
|
3243 |
+
},
|
3244 |
+
{
|
3245 |
+
"epoch": 0.33,
|
3246 |
+
"learning_rate": 9.067598576872067e-06,
|
3247 |
+
"loss": 1.2193,
|
3248 |
+
"step": 5400
|
3249 |
+
},
|
3250 |
+
{
|
3251 |
+
"epoch": 0.33,
|
3252 |
+
"learning_rate": 9.065493358034568e-06,
|
3253 |
+
"loss": 1.2051,
|
3254 |
+
"step": 5410
|
3255 |
+
},
|
3256 |
+
{
|
3257 |
+
"epoch": 0.34,
|
3258 |
+
"learning_rate": 9.06338813919707e-06,
|
3259 |
+
"loss": 1.1981,
|
3260 |
+
"step": 5420
|
3261 |
+
},
|
3262 |
+
{
|
3263 |
+
"epoch": 0.34,
|
3264 |
+
"learning_rate": 9.061282920359571e-06,
|
3265 |
+
"loss": 1.2218,
|
3266 |
+
"step": 5430
|
3267 |
+
},
|
3268 |
+
{
|
3269 |
+
"epoch": 0.34,
|
3270 |
+
"learning_rate": 9.059177701522074e-06,
|
3271 |
+
"loss": 1.2669,
|
3272 |
+
"step": 5440
|
3273 |
+
},
|
3274 |
+
{
|
3275 |
+
"epoch": 0.34,
|
3276 |
+
"learning_rate": 9.057072482684576e-06,
|
3277 |
+
"loss": 1.2127,
|
3278 |
+
"step": 5450
|
3279 |
+
},
|
3280 |
+
{
|
3281 |
+
"epoch": 0.34,
|
3282 |
+
"learning_rate": 9.054967263847077e-06,
|
3283 |
+
"loss": 1.1538,
|
3284 |
+
"step": 5460
|
3285 |
+
},
|
3286 |
+
{
|
3287 |
+
"epoch": 0.34,
|
3288 |
+
"learning_rate": 9.05286204500958e-06,
|
3289 |
+
"loss": 1.1664,
|
3290 |
+
"step": 5470
|
3291 |
+
},
|
3292 |
+
{
|
3293 |
+
"epoch": 0.34,
|
3294 |
+
"learning_rate": 9.050756826172082e-06,
|
3295 |
+
"loss": 1.1976,
|
3296 |
+
"step": 5480
|
3297 |
+
},
|
3298 |
+
{
|
3299 |
+
"epoch": 0.34,
|
3300 |
+
"learning_rate": 9.048651607334583e-06,
|
3301 |
+
"loss": 1.2223,
|
3302 |
+
"step": 5490
|
3303 |
+
},
|
3304 |
+
{
|
3305 |
+
"epoch": 0.34,
|
3306 |
+
"learning_rate": 9.046546388497085e-06,
|
3307 |
+
"loss": 1.201,
|
3308 |
+
"step": 5500
|
3309 |
+
},
|
3310 |
+
{
|
3311 |
+
"epoch": 0.34,
|
3312 |
+
"learning_rate": 9.044441169659586e-06,
|
3313 |
+
"loss": 1.2372,
|
3314 |
+
"step": 5510
|
3315 |
+
},
|
3316 |
+
{
|
3317 |
+
"epoch": 0.34,
|
3318 |
+
"learning_rate": 9.042335950822089e-06,
|
3319 |
+
"loss": 1.1758,
|
3320 |
+
"step": 5520
|
3321 |
+
},
|
3322 |
+
{
|
3323 |
+
"epoch": 0.34,
|
3324 |
+
"learning_rate": 9.040230731984591e-06,
|
3325 |
+
"loss": 1.1793,
|
3326 |
+
"step": 5530
|
3327 |
+
},
|
3328 |
+
{
|
3329 |
+
"epoch": 0.34,
|
3330 |
+
"learning_rate": 9.038125513147092e-06,
|
3331 |
+
"loss": 1.1706,
|
3332 |
+
"step": 5540
|
3333 |
+
},
|
3334 |
+
{
|
3335 |
+
"epoch": 0.34,
|
3336 |
+
"learning_rate": 9.036020294309594e-06,
|
3337 |
+
"loss": 1.2267,
|
3338 |
+
"step": 5550
|
3339 |
+
},
|
3340 |
+
{
|
3341 |
+
"epoch": 0.34,
|
3342 |
+
"learning_rate": 9.033915075472097e-06,
|
3343 |
+
"loss": 1.218,
|
3344 |
+
"step": 5560
|
3345 |
+
},
|
3346 |
+
{
|
3347 |
+
"epoch": 0.34,
|
3348 |
+
"learning_rate": 9.031809856634598e-06,
|
3349 |
+
"loss": 1.1789,
|
3350 |
+
"step": 5570
|
3351 |
+
},
|
3352 |
+
{
|
3353 |
+
"epoch": 0.35,
|
3354 |
+
"learning_rate": 9.0297046377971e-06,
|
3355 |
+
"loss": 1.2317,
|
3356 |
+
"step": 5580
|
3357 |
+
},
|
3358 |
+
{
|
3359 |
+
"epoch": 0.35,
|
3360 |
+
"learning_rate": 9.027599418959601e-06,
|
3361 |
+
"loss": 1.23,
|
3362 |
+
"step": 5590
|
3363 |
+
},
|
3364 |
+
{
|
3365 |
+
"epoch": 0.35,
|
3366 |
+
"learning_rate": 9.025494200122104e-06,
|
3367 |
+
"loss": 1.2058,
|
3368 |
+
"step": 5600
|
3369 |
+
},
|
3370 |
+
{
|
3371 |
+
"epoch": 0.35,
|
3372 |
+
"learning_rate": 9.023388981284606e-06,
|
3373 |
+
"loss": 1.276,
|
3374 |
+
"step": 5610
|
3375 |
+
},
|
3376 |
+
{
|
3377 |
+
"epoch": 0.35,
|
3378 |
+
"learning_rate": 9.021283762447107e-06,
|
3379 |
+
"loss": 1.1758,
|
3380 |
+
"step": 5620
|
3381 |
+
},
|
3382 |
+
{
|
3383 |
+
"epoch": 0.35,
|
3384 |
+
"learning_rate": 9.01917854360961e-06,
|
3385 |
+
"loss": 1.182,
|
3386 |
+
"step": 5630
|
3387 |
+
},
|
3388 |
+
{
|
3389 |
+
"epoch": 0.35,
|
3390 |
+
"learning_rate": 9.01707332477211e-06,
|
3391 |
+
"loss": 1.2027,
|
3392 |
+
"step": 5640
|
3393 |
+
},
|
3394 |
+
{
|
3395 |
+
"epoch": 0.35,
|
3396 |
+
"learning_rate": 9.014968105934613e-06,
|
3397 |
+
"loss": 1.2442,
|
3398 |
+
"step": 5650
|
3399 |
+
},
|
3400 |
+
{
|
3401 |
+
"epoch": 0.35,
|
3402 |
+
"learning_rate": 9.012862887097115e-06,
|
3403 |
+
"loss": 1.1509,
|
3404 |
+
"step": 5660
|
3405 |
+
},
|
3406 |
+
{
|
3407 |
+
"epoch": 0.35,
|
3408 |
+
"learning_rate": 9.010757668259616e-06,
|
3409 |
+
"loss": 1.2369,
|
3410 |
+
"step": 5670
|
3411 |
+
},
|
3412 |
+
{
|
3413 |
+
"epoch": 0.35,
|
3414 |
+
"learning_rate": 9.008652449422118e-06,
|
3415 |
+
"loss": 1.225,
|
3416 |
+
"step": 5680
|
3417 |
+
},
|
3418 |
+
{
|
3419 |
+
"epoch": 0.35,
|
3420 |
+
"learning_rate": 9.006547230584621e-06,
|
3421 |
+
"loss": 1.2575,
|
3422 |
+
"step": 5690
|
3423 |
+
},
|
3424 |
+
{
|
3425 |
+
"epoch": 0.35,
|
3426 |
+
"learning_rate": 9.004442011747122e-06,
|
3427 |
+
"loss": 1.1801,
|
3428 |
+
"step": 5700
|
3429 |
+
},
|
3430 |
+
{
|
3431 |
+
"epoch": 0.35,
|
3432 |
+
"learning_rate": 9.002336792909624e-06,
|
3433 |
+
"loss": 1.1817,
|
3434 |
+
"step": 5710
|
3435 |
+
},
|
3436 |
+
{
|
3437 |
+
"epoch": 0.35,
|
3438 |
+
"learning_rate": 9.000231574072125e-06,
|
3439 |
+
"loss": 1.2392,
|
3440 |
+
"step": 5720
|
3441 |
+
},
|
3442 |
+
{
|
3443 |
+
"epoch": 0.35,
|
3444 |
+
"learning_rate": 8.998126355234628e-06,
|
3445 |
+
"loss": 1.1718,
|
3446 |
+
"step": 5730
|
3447 |
+
},
|
3448 |
+
{
|
3449 |
+
"epoch": 0.36,
|
3450 |
+
"learning_rate": 8.99602113639713e-06,
|
3451 |
+
"loss": 1.2155,
|
3452 |
+
"step": 5740
|
3453 |
+
},
|
3454 |
+
{
|
3455 |
+
"epoch": 0.36,
|
3456 |
+
"learning_rate": 8.993915917559631e-06,
|
3457 |
+
"loss": 1.1976,
|
3458 |
+
"step": 5750
|
3459 |
+
},
|
3460 |
+
{
|
3461 |
+
"epoch": 0.36,
|
3462 |
+
"learning_rate": 8.991810698722133e-06,
|
3463 |
+
"loss": 1.1715,
|
3464 |
+
"step": 5760
|
3465 |
+
},
|
3466 |
+
{
|
3467 |
+
"epoch": 0.36,
|
3468 |
+
"learning_rate": 8.989705479884636e-06,
|
3469 |
+
"loss": 1.1555,
|
3470 |
+
"step": 5770
|
3471 |
+
},
|
3472 |
+
{
|
3473 |
+
"epoch": 0.36,
|
3474 |
+
"learning_rate": 8.987600261047137e-06,
|
3475 |
+
"loss": 1.2071,
|
3476 |
+
"step": 5780
|
3477 |
+
},
|
3478 |
+
{
|
3479 |
+
"epoch": 0.36,
|
3480 |
+
"learning_rate": 8.98549504220964e-06,
|
3481 |
+
"loss": 1.2062,
|
3482 |
+
"step": 5790
|
3483 |
+
},
|
3484 |
+
{
|
3485 |
+
"epoch": 0.36,
|
3486 |
+
"learning_rate": 8.98338982337214e-06,
|
3487 |
+
"loss": 1.1978,
|
3488 |
+
"step": 5800
|
3489 |
+
},
|
3490 |
+
{
|
3491 |
+
"epoch": 0.36,
|
3492 |
+
"learning_rate": 8.981284604534642e-06,
|
3493 |
+
"loss": 1.2125,
|
3494 |
+
"step": 5810
|
3495 |
+
},
|
3496 |
+
{
|
3497 |
+
"epoch": 0.36,
|
3498 |
+
"learning_rate": 8.979179385697145e-06,
|
3499 |
+
"loss": 1.1887,
|
3500 |
+
"step": 5820
|
3501 |
+
},
|
3502 |
+
{
|
3503 |
+
"epoch": 0.36,
|
3504 |
+
"learning_rate": 8.977074166859646e-06,
|
3505 |
+
"loss": 1.2384,
|
3506 |
+
"step": 5830
|
3507 |
+
},
|
3508 |
+
{
|
3509 |
+
"epoch": 0.36,
|
3510 |
+
"learning_rate": 8.974968948022148e-06,
|
3511 |
+
"loss": 1.2708,
|
3512 |
+
"step": 5840
|
3513 |
+
},
|
3514 |
+
{
|
3515 |
+
"epoch": 0.36,
|
3516 |
+
"learning_rate": 8.972863729184649e-06,
|
3517 |
+
"loss": 1.1985,
|
3518 |
+
"step": 5850
|
3519 |
+
},
|
3520 |
+
{
|
3521 |
+
"epoch": 0.36,
|
3522 |
+
"learning_rate": 8.970758510347152e-06,
|
3523 |
+
"loss": 1.2202,
|
3524 |
+
"step": 5860
|
3525 |
+
},
|
3526 |
+
{
|
3527 |
+
"epoch": 0.36,
|
3528 |
+
"learning_rate": 8.968653291509654e-06,
|
3529 |
+
"loss": 1.2281,
|
3530 |
+
"step": 5870
|
3531 |
+
},
|
3532 |
+
{
|
3533 |
+
"epoch": 0.36,
|
3534 |
+
"learning_rate": 8.966548072672155e-06,
|
3535 |
+
"loss": 1.2158,
|
3536 |
+
"step": 5880
|
3537 |
+
},
|
3538 |
+
{
|
3539 |
+
"epoch": 0.36,
|
3540 |
+
"learning_rate": 8.964442853834657e-06,
|
3541 |
+
"loss": 1.1912,
|
3542 |
+
"step": 5890
|
3543 |
+
},
|
3544 |
+
{
|
3545 |
+
"epoch": 0.37,
|
3546 |
+
"learning_rate": 8.96233763499716e-06,
|
3547 |
+
"loss": 1.1822,
|
3548 |
+
"step": 5900
|
3549 |
+
},
|
3550 |
+
{
|
3551 |
+
"epoch": 0.37,
|
3552 |
+
"learning_rate": 8.96023241615966e-06,
|
3553 |
+
"loss": 1.2181,
|
3554 |
+
"step": 5910
|
3555 |
+
},
|
3556 |
+
{
|
3557 |
+
"epoch": 0.37,
|
3558 |
+
"learning_rate": 8.958127197322163e-06,
|
3559 |
+
"loss": 1.1901,
|
3560 |
+
"step": 5920
|
3561 |
+
},
|
3562 |
+
{
|
3563 |
+
"epoch": 0.37,
|
3564 |
+
"learning_rate": 8.956021978484664e-06,
|
3565 |
+
"loss": 1.1742,
|
3566 |
+
"step": 5930
|
3567 |
+
},
|
3568 |
+
{
|
3569 |
+
"epoch": 0.37,
|
3570 |
+
"learning_rate": 8.953916759647166e-06,
|
3571 |
+
"loss": 1.1675,
|
3572 |
+
"step": 5940
|
3573 |
+
},
|
3574 |
+
{
|
3575 |
+
"epoch": 0.37,
|
3576 |
+
"learning_rate": 8.951811540809669e-06,
|
3577 |
+
"loss": 1.249,
|
3578 |
+
"step": 5950
|
3579 |
+
},
|
3580 |
+
{
|
3581 |
+
"epoch": 0.37,
|
3582 |
+
"learning_rate": 8.94970632197217e-06,
|
3583 |
+
"loss": 1.1683,
|
3584 |
+
"step": 5960
|
3585 |
+
},
|
3586 |
+
{
|
3587 |
+
"epoch": 0.37,
|
3588 |
+
"learning_rate": 8.947601103134672e-06,
|
3589 |
+
"loss": 1.1558,
|
3590 |
+
"step": 5970
|
3591 |
+
},
|
3592 |
+
{
|
3593 |
+
"epoch": 0.37,
|
3594 |
+
"learning_rate": 8.945495884297175e-06,
|
3595 |
+
"loss": 1.1685,
|
3596 |
+
"step": 5980
|
3597 |
+
},
|
3598 |
+
{
|
3599 |
+
"epoch": 0.37,
|
3600 |
+
"learning_rate": 8.943390665459674e-06,
|
3601 |
+
"loss": 1.1734,
|
3602 |
+
"step": 5990
|
3603 |
+
},
|
3604 |
+
{
|
3605 |
+
"epoch": 0.37,
|
3606 |
+
"learning_rate": 8.941285446622176e-06,
|
3607 |
+
"loss": 1.1478,
|
3608 |
+
"step": 6000
|
3609 |
+
}
|
3610 |
+
],
|
3611 |
+
"max_steps": 48471,
|
3612 |
+
"num_train_epochs": 3,
|
3613 |
+
"total_flos": 3.0400555051175117e+19,
|
3614 |
+
"trial_name": null,
|
3615 |
+
"trial_params": null
|
3616 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e46570d1be944689c0056f202607801965879286f93708fe363bbf196a88dc0
|
3 |
+
size 5371
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage == 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dicts.append(torch.load(f, map_location=device))
|
147 |
+
|
148 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
149 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
150 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
151 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
152 |
+
|
153 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
154 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
155 |
+
# use the max of the partition_count to get the dp world_size.
|
156 |
+
|
157 |
+
if type(world_size) is list:
|
158 |
+
world_size = max(world_size)
|
159 |
+
|
160 |
+
if world_size != total_files:
|
161 |
+
raise ValueError(
|
162 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
163 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
164 |
+
)
|
165 |
+
|
166 |
+
# the groups are named differently in each stage
|
167 |
+
if zero_stage == 2:
|
168 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
169 |
+
elif zero_stage == 3:
|
170 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
171 |
+
else:
|
172 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
173 |
+
|
174 |
+
if zero_stage == 2:
|
175 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
176 |
+
elif zero_stage == 3:
|
177 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
178 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
179 |
+
#
|
180 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
181 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
182 |
+
|
183 |
+
fp32_flat_groups = [
|
184 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
185 |
+
]
|
186 |
+
|
187 |
+
return zero_stage, world_size, fp32_flat_groups
|
188 |
+
|
189 |
+
|
190 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
191 |
+
"""
|
192 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
193 |
+
|
194 |
+
Args:
|
195 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
196 |
+
|
197 |
+
"""
|
198 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
199 |
+
|
200 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
201 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
202 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
203 |
+
|
204 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
205 |
+
|
206 |
+
zero_model_states = parse_model_states(model_files)
|
207 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
208 |
+
|
209 |
+
if zero_stage == 2:
|
210 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
211 |
+
elif zero_stage == 3:
|
212 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
248 |
+
param_shapes = zero_model_states[0].param_shapes
|
249 |
+
|
250 |
+
# Reconstruction protocol:
|
251 |
+
#
|
252 |
+
# XXX: document this
|
253 |
+
|
254 |
+
if debug:
|
255 |
+
for i in range(world_size):
|
256 |
+
for j in range(len(fp32_flat_groups[0])):
|
257 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
258 |
+
|
259 |
+
# XXX: memory usage doubles here (zero2)
|
260 |
+
num_param_groups = len(fp32_flat_groups[0])
|
261 |
+
merged_single_partition_of_fp32_groups = []
|
262 |
+
for i in range(num_param_groups):
|
263 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
264 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
265 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
266 |
+
avail_numel = sum(
|
267 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
271 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
272 |
+
# not asserting if there is a mismatch due to possible padding
|
273 |
+
print(f"Have {avail_numel} numels to process.")
|
274 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
275 |
+
|
276 |
+
# params
|
277 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
278 |
+
# out-of-core computing solution
|
279 |
+
total_numel = 0
|
280 |
+
total_params = 0
|
281 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
282 |
+
offset = 0
|
283 |
+
avail_numel = full_single_fp32_vector.numel()
|
284 |
+
for name, shape in shapes.items():
|
285 |
+
|
286 |
+
unpartitioned_numel = shape.numel()
|
287 |
+
total_numel += unpartitioned_numel
|
288 |
+
total_params += 1
|
289 |
+
|
290 |
+
if debug:
|
291 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
292 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
293 |
+
offset += unpartitioned_numel
|
294 |
+
|
295 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
296 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
297 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
298 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
299 |
+
align_to = 2 * world_size
|
300 |
+
|
301 |
+
def zero2_align(x):
|
302 |
+
return align_to * math.ceil(x / align_to)
|
303 |
+
|
304 |
+
if debug:
|
305 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
306 |
+
|
307 |
+
offset = zero2_align(offset)
|
308 |
+
avail_numel = zero2_align(avail_numel)
|
309 |
+
|
310 |
+
if debug:
|
311 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
312 |
+
|
313 |
+
# Sanity check
|
314 |
+
if offset != avail_numel:
|
315 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
316 |
+
|
317 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
318 |
+
|
319 |
+
|
320 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
321 |
+
state_dict = OrderedDict()
|
322 |
+
|
323 |
+
# buffers
|
324 |
+
buffers = zero_model_states[0].buffers
|
325 |
+
state_dict.update(buffers)
|
326 |
+
if debug:
|
327 |
+
print(f"added {len(buffers)} buffers")
|
328 |
+
|
329 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
330 |
+
|
331 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
332 |
+
|
333 |
+
# recover shared parameters
|
334 |
+
for pair in zero_model_states[0].shared_params:
|
335 |
+
if pair[1] in state_dict:
|
336 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
337 |
+
|
338 |
+
return state_dict
|
339 |
+
|
340 |
+
|
341 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
342 |
+
remainder = unpartitioned_numel % world_size
|
343 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
344 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
345 |
+
return partitioned_numel, padding_numel
|
346 |
+
|
347 |
+
|
348 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
349 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
350 |
+
return
|
351 |
+
|
352 |
+
if debug:
|
353 |
+
for i in range(world_size):
|
354 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
355 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
356 |
+
|
357 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
358 |
+
wanted_params = len(frozen_param_shapes)
|
359 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
360 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
361 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
362 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
363 |
+
|
364 |
+
total_params = 0
|
365 |
+
total_numel = 0
|
366 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
367 |
+
total_params += 1
|
368 |
+
unpartitioned_numel = shape.numel()
|
369 |
+
total_numel += unpartitioned_numel
|
370 |
+
|
371 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
372 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
373 |
+
|
374 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
375 |
+
|
376 |
+
if debug:
|
377 |
+
print(
|
378 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
379 |
+
)
|
380 |
+
|
381 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
382 |
+
|
383 |
+
|
384 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
385 |
+
param_shapes = zero_model_states[0].param_shapes
|
386 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
387 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
388 |
+
# param, re-consolidating each param, while dealing with padding if any
|
389 |
+
|
390 |
+
# merge list of dicts, preserving order
|
391 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
for i in range(world_size):
|
395 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
396 |
+
|
397 |
+
wanted_params = len(param_shapes)
|
398 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
399 |
+
# not asserting if there is a mismatch due to possible padding
|
400 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
401 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
402 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
403 |
+
|
404 |
+
# params
|
405 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
406 |
+
# out-of-core computing solution
|
407 |
+
offset = 0
|
408 |
+
total_numel = 0
|
409 |
+
total_params = 0
|
410 |
+
for name, shape in param_shapes.items():
|
411 |
+
|
412 |
+
unpartitioned_numel = shape.numel()
|
413 |
+
total_numel += unpartitioned_numel
|
414 |
+
total_params += 1
|
415 |
+
|
416 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
417 |
+
|
418 |
+
if debug:
|
419 |
+
print(
|
420 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
421 |
+
)
|
422 |
+
|
423 |
+
# XXX: memory usage doubles here
|
424 |
+
state_dict[name] = torch.cat(
|
425 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
426 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
427 |
+
offset += partitioned_numel
|
428 |
+
|
429 |
+
offset *= world_size
|
430 |
+
|
431 |
+
# Sanity check
|
432 |
+
if offset != avail_numel:
|
433 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
434 |
+
|
435 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
436 |
+
|
437 |
+
|
438 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
439 |
+
state_dict = OrderedDict()
|
440 |
+
|
441 |
+
# buffers
|
442 |
+
buffers = zero_model_states[0].buffers
|
443 |
+
state_dict.update(buffers)
|
444 |
+
if debug:
|
445 |
+
print(f"added {len(buffers)} buffers")
|
446 |
+
|
447 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
448 |
+
|
449 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
450 |
+
|
451 |
+
# recover shared parameters
|
452 |
+
for pair in zero_model_states[0].shared_params:
|
453 |
+
if pair[1] in state_dict:
|
454 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
455 |
+
|
456 |
+
return state_dict
|
457 |
+
|
458 |
+
|
459 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
460 |
+
"""
|
461 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
462 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
463 |
+
via a model hub.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
467 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
- pytorch ``state_dict``
|
471 |
+
|
472 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
473 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
474 |
+
the checkpoint.
|
475 |
+
|
476 |
+
A typical usage might be ::
|
477 |
+
|
478 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
479 |
+
# do the training and checkpoint saving
|
480 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
481 |
+
model = model.cpu() # move to cpu
|
482 |
+
model.load_state_dict(state_dict)
|
483 |
+
# submit to model hub or save the model to share with others
|
484 |
+
|
485 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
486 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
487 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
488 |
+
|
489 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
490 |
+
|
491 |
+
"""
|
492 |
+
if tag is None:
|
493 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
494 |
+
if os.path.isfile(latest_path):
|
495 |
+
with open(latest_path, 'r') as fd:
|
496 |
+
tag = fd.read().strip()
|
497 |
+
else:
|
498 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
499 |
+
|
500 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
501 |
+
|
502 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
503 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
504 |
+
|
505 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
506 |
+
|
507 |
+
|
508 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
509 |
+
"""
|
510 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
511 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
512 |
+
|
513 |
+
Args:
|
514 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
515 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
516 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
517 |
+
"""
|
518 |
+
|
519 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
520 |
+
print(f"Saving fp32 state dict to {output_file}")
|
521 |
+
torch.save(state_dict, output_file)
|
522 |
+
|
523 |
+
|
524 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
525 |
+
"""
|
526 |
+
1. Put the provided model to cpu
|
527 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
528 |
+
3. Load it into the provided model
|
529 |
+
|
530 |
+
Args:
|
531 |
+
- ``model``: the model object to update
|
532 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
533 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
- ``model`: modified model
|
537 |
+
|
538 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
539 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
540 |
+
conveniently placed for you in the checkpoint folder.
|
541 |
+
|
542 |
+
A typical usage might be ::
|
543 |
+
|
544 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
545 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
546 |
+
# submit to model hub or save the model to share with others
|
547 |
+
|
548 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
549 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
550 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
551 |
+
|
552 |
+
"""
|
553 |
+
logger.info(f"Extracting fp32 weights")
|
554 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
555 |
+
|
556 |
+
logger.info(f"Overwriting model with fp32 weights")
|
557 |
+
model = model.cpu()
|
558 |
+
model.load_state_dict(state_dict, strict=False)
|
559 |
+
|
560 |
+
return model
|
561 |
+
|
562 |
+
|
563 |
+
if __name__ == "__main__":
|
564 |
+
|
565 |
+
parser = argparse.ArgumentParser()
|
566 |
+
parser.add_argument("checkpoint_dir",
|
567 |
+
type=str,
|
568 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
569 |
+
parser.add_argument(
|
570 |
+
"output_file",
|
571 |
+
type=str,
|
572 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
573 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
574 |
+
args = parser.parse_args()
|
575 |
+
|
576 |
+
debug = args.debug
|
577 |
+
|
578 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|