--- license: mit datasets: - web_nlg language: - en widget: - text: "Bourg-la-Reine is located in France and I love this town. I'm from People's Republic of China. [SEP] A Chinese, Loves, Bourg-la-Reine" --- # Model card for Inria-CEDAR/FactSpotter-DeBERTaV3-Small ## Model description This model is related to the paper **"FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation"**. Given a triple of format "subject, predicate, object" and a text, the model determines if the triple is present in the text. Different from the paper using ELECTRA, this model is finetuned on DeBERTaV3. We also provide Base and Large versions of this model: https://huggingface.co./Inria-CEDAR/FactSpotter-DeBERTaV3-Base https://huggingface.co./Inria-CEDAR/FactSpotter-DeBERTaV3-Large ## How to use the model ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification def sentence_cls_score(input_strings, predicate_cls_model, predicate_cls_tokenizer): tokenized_cls_input = predicate_cls_tokenizer(input_strings, truncation=True, padding=True, return_token_type_ids=True) input_ids = torch.Tensor(tokenized_cls_input['input_ids']).long().to(torch.device("cuda")) token_type_ids = torch.Tensor(tokenized_cls_input['token_type_ids']).long().to(torch.device("cuda")) attention_mask = torch.Tensor(tokenized_cls_input['attention_mask']).long().to(torch.device("cuda")) prev_cls_output = predicate_cls_model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) softmax_cls_output = torch.softmax(prev_cls_output.logits, dim=1, ) return softmax_cls_output tokenizer = AutoTokenizer.from_pretrained("Inria-CEDAR/FactSpotter-DeBERTaV3-Small") model = AutoModelForSequenceClassification.from_pretrained("Inria-CEDAR/FactSpotter-DeBERTaV3-Small") model.to(torch.device("cuda")) # pairs of texts (as premises) and triples (as hypotheses) cls_texts = [("the aarhus is the airport of aarhus, denmark", "aarhus airport, city served, aarhus, denmark"), ("aarhus airport is 25.0 metres above the sea level", "aarhus airport, elevation above the sea level, 1174")] cls_scores = sentence_cls_score(cls_texts, model, tokenizer) # Dimensions: 0-entailment, 1-neutral, 2-contradiction label_names = ["entailment", "neutral", "contradiction"] ``` ## Citation If the model is useful to you, please cite the paper ``` @inproceedings{zhang:hal-04257838, TITLE = {{FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation}}, AUTHOR = {Zhang, Kun and Balalau, Oana and Manolescu, Ioana}, URL = {https://hal.science/hal-04257838}, BOOKTITLE = {{Findings of EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing}}, ADDRESS = {Singapore, Singapore}, YEAR = {2023}, MONTH = Dec, KEYWORDS = {Graph-to-Text Generation ; Factual Faithfulness ; Constrained Text Generation}, PDF = {https://hal.science/hal-04257838/file/_EMNLP_2023__Evaluating_the_Factual_Faithfulness_of_Graph_to_Text_Generation_Camera.pdf}, HAL_ID = {hal-04257838}, HAL_VERSION = {v1}, } ``` ## Questions If you have some questions, please contact through my email zhangkun@ieee.org or kun.zhang@inria.fr