guihu commited on
Commit
b86f54f
1 Parent(s): 7869c42

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -0
README.md CHANGED
@@ -19,6 +19,8 @@ Different from the paper using ELECTRA, this model is finetuned on DeBERTaV3.
19
 
20
  ```
21
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
 
 
22
  def sentence_cls_score(input_strings, predicate_cls_model, predicate_cls_tokenizer):
23
  tokenized_cls_input = predicate_cls_tokenizer(input_strings, truncation=True, padding=True,
24
  return_token_type_ids=True)
@@ -28,9 +30,12 @@ def sentence_cls_score(input_strings, predicate_cls_model, predicate_cls_tokeniz
28
  prev_cls_output = predicate_cls_model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
29
  softmax_cls_output = torch.softmax(prev_cls_output.logits, dim=1, )
30
  return softmax_cls_output
 
 
31
  tokenizer = AutoTokenizer.from_pretrained("Inria-CEDAR/FactSpotter-DeBERTaV3-Small")
32
  model = AutoModelForSequenceClassification.from_pretrained("Inria-CEDAR/FactSpotter-DeBERTaV3-Small")
33
  model.to(torch.device("cuda"))
 
34
  # pairs of texts (as premises) and triples (as hypotheses)
35
  cls_texts = [("the aarhus is the airport of aarhus, denmark", "aarhus airport | city served | aarhus, denmark"),
36
  ("aarhus airport is 25.0 metres above the sea level", "aarhus airport | elevation above the sea level | 1174")]
 
19
 
20
  ```
21
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
22
+
23
+
24
  def sentence_cls_score(input_strings, predicate_cls_model, predicate_cls_tokenizer):
25
  tokenized_cls_input = predicate_cls_tokenizer(input_strings, truncation=True, padding=True,
26
  return_token_type_ids=True)
 
30
  prev_cls_output = predicate_cls_model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
31
  softmax_cls_output = torch.softmax(prev_cls_output.logits, dim=1, )
32
  return softmax_cls_output
33
+
34
+
35
  tokenizer = AutoTokenizer.from_pretrained("Inria-CEDAR/FactSpotter-DeBERTaV3-Small")
36
  model = AutoModelForSequenceClassification.from_pretrained("Inria-CEDAR/FactSpotter-DeBERTaV3-Small")
37
  model.to(torch.device("cuda"))
38
+
39
  # pairs of texts (as premises) and triples (as hypotheses)
40
  cls_texts = [("the aarhus is the airport of aarhus, denmark", "aarhus airport | city served | aarhus, denmark"),
41
  ("aarhus airport is 25.0 metres above the sea level", "aarhus airport | elevation above the sea level | 1174")]