--- license: mit datasets: - web_nlg language: - en --- # Model card for Inria-CEDAR/FactSpotter-DeBERTaV3-Large ## Model description This model is related to the paper **"FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation"**. Given a triple of format "subject | predicate | object" and a text, the model determines if the triple is present in the text. ## How to use the model ``` from transformers import AutoTokenizer, AutoModelForSequenceClassification def sentence_cls_score(input_strings, predicate_cls_model, predicate_cls_tokenizer): tokenized_cls_input = predicate_cls_tokenizer(input_strings, truncation=True, padding=True, return_token_type_ids=True) input_ids = torch.Tensor(tokenized_cls_input['input_ids']).long().to(torch.device("cuda")) token_type_ids = torch.Tensor(tokenized_cls_input['token_type_ids']).long().to(torch.device("cuda")) attention_mask = torch.Tensor(tokenized_cls_input['attention_mask']).long().to(torch.device("cuda")) prev_cls_output = predicate_cls_model(input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) softmax_cls_output = torch.softmax(prev_cls_output.logits, dim=1, ) return softmax_cls_output tokenizer = AutoTokenizer.from_pretrained("Inria-CEDAR/FactSpotter-DeBERTaV3-Large") model = AutoModelForSequenceClassification.from_pretrained("Inria-CEDAR/FactSpotter-DeBERTaV3-Large") # pairs of texts (as premises) and triples (as hypotheses) cls_texts = [("the aarhus is the airport of aarhus, denmark", "aarhus airport | city served | aarhus, denmark"), ("aarhus airport is 25.0 metres above the sea level", "aarhus airport | elevation above the sea level | 1174")] cls_scores = sentence_cls_score(cls_texts, model, tokenizer) # Dimensions: 0-entailment, 1-neutral, 2-contradiction label_names = ["entailment", "neutral", "contradiction"] ``` ## Citation If the model is useful to you, please cite the paper ``` @inproceedings{zhang:hal-04257838, TITLE = {{FactSpotter: Evaluating the Factual Faithfulness of Graph-to-Text Generation}}, AUTHOR = {Zhang, Kun and Balalau, Oana and Manolescu, Ioana}, URL = {https://hal.science/hal-04257838}, BOOKTITLE = {{Findings of EMNLP 2023 - Conference on Empirical Methods in Natural Language Processing}}, ADDRESS = {Singapore, Singapore}, YEAR = {2023}, MONTH = Dec, KEYWORDS = {Graph-to-Text Generation ; Factual Faithfulness ; Constrained Text Generation}, PDF = {https://hal.science/hal-04257838/file/_EMNLP_2023__Evaluating_the_Factual_Faithfulness_of_Graph_to_Text_Generation_Camera.pdf}, HAL_ID = {hal-04257838}, HAL_VERSION = {v1}, } ``` ## Questions If you have some questions, please contact through my email zhangkun@ieee.org or kun.zhang@inria.fr