--- base_model: - InferenceIllusionist/Excalibur-7b library_name: transformers tags: - finetune - dpo - chatml - gguf - imat license: apache-2.0 datasets: - Intel/orca_dpo_pairs --- # Excalibur-7b-DPO-iMat-GGUF Quantized from fp32 with love. iMatrix .dat file was calculated using groups_merged.txt. FP16 available [here](https://huggingface.co./InferenceIllusionist/Excalibur-7b-DPO) An initial foray into the world of fine-tuning. The goal of this release was to amplify the quality of the original model's responses, in particular for vision use cases* ## Notes & Methodology * [Excalibur-7b](https://huggingface.co./InferenceIllusionist/Excalibur-7b) fine-tuned with Direct Preference Optimization (DPO) using Intel/orca_dpo_pairs * This is a quick experiment to determine the impact of DPO finetuning on the original base model * Ran for a little over an hour on a single A100 * Internal benchmarks showed improvement over base model, awaiting final results * Precision: bfloat16 ## Sample Question - Vision *Requires additional mmproj file. You have two options for vision functionality (available inside original repo or linked below): * [Quantized - Limited VRAM Option (197mb)](https://huggingface.co./InferenceIllusionist/Excalibur-7b-DPO-GGUF/resolve/main/mistral-7b-mmproj-v1.5-Q4_1.gguf?download=true) * [Unquantized - Premium Option / Best Quality (596mb)](https://huggingface.co./InferenceIllusionist/Excalibur-7b-DPO-GGUF/resolve/main/mmproj-model-f16.gguf?download=true) Select the gguf file of your choice in Kobold as usual, then make sure to choose the mmproj file above in the LLaVA mmproj field of the model submenu: ## Prompt Format * For best results please use ChatML for the prompt format. Alpaca may also work. # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_InferenceIllusionist__Excalibur-7b-DPO) | Metric |Value| |---------------------------------|----:| |Avg. |73.84| |AI2 Reasoning Challenge (25-Shot)|70.90| |HellaSwag (10-Shot) |87.93| |MMLU (5-Shot) |65.46| |TruthfulQA (0-shot) |70.82| |Winogrande (5-shot) |82.48| |GSM8k (5-shot) |65.43|