--- datasets: - IlyaGusev/ru_turbo_saiga - IlyaGusev/ru_sharegpt_cleaned - IlyaGusev/oasst1_ru_main_branch - IlyaGusev/ru_turbo_alpaca_evol_instruct - lksy/ru_instruct_gpt4 language: - ru pipeline_tag: conversational license: cc-by-4.0 --- # Saiga/Mistral 7B, Russian Mistral-based chatbot Based on [Mistral OpenOrca](https://huggingface.co./Open-Orca/Mistral-7B-OpenOrca). This is an adapter-only version. Llama.cpp version: TBA Colab: TBA Training code: [link](https://github.com/IlyaGusev/rulm/tree/master/self_instruct). ```python from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig MODEL_NAME = "IlyaGusev/saiga_mistral_7b" DEFAULT_MESSAGE_TEMPLATE = "{role}\n{content}" DEFAULT_RESPONSE_TEMPLATE = "bot\n" DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им." class Conversation: def __init__( self, message_template=DEFAULT_MESSAGE_TEMPLATE, system_prompt=DEFAULT_SYSTEM_PROMPT, response_template=DEFAULT_RESPONSE_TEMPLATE ): self.message_template = message_template self.response_template = response_template self.messages = [{ "role": "system", "content": system_prompt }] def add_user_message(self, message): self.messages.append({ "role": "user", "content": message }) def add_bot_message(self, message): self.messages.append({ "role": "bot", "content": message }) def get_prompt(self, tokenizer): final_text = "" for message in self.messages: message_text = self.message_template.format(**message) final_text += message_text final_text += DEFAULT_RESPONSE_TEMPLATE return final_text.strip() def generate(model, tokenizer, prompt, generation_config): data = tokenizer(prompt, return_tensors="pt", add_special_tokens=False) data = {k: v.to(model.device) for k, v in data.items()} output_ids = model.generate( **data, generation_config=generation_config )[0] output_ids = output_ids[len(data["input_ids"][0]):] output = tokenizer.decode(output_ids, skip_special_tokens=True) return output.strip() config = PeftConfig.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, load_in_8bit=True, torch_dtype=torch.float16, device_map="auto" ) model = PeftModel.from_pretrained( model, MODEL_NAME, torch_dtype=torch.float16 ) model.eval() tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False) generation_config = GenerationConfig.from_pretrained(MODEL_NAME) print(generation_config) inputs = ["Почему трава зеленая?", "Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч"] for inp in inputs: conversation = Conversation() conversation.add_user_message(inp) prompt = conversation.get_prompt(tokenizer) output = generate(model, tokenizer, prompt, generation_config) print(inp) print(output) print() print("==============================") print() ``` Examples: ``` User: Почему трава зеленая? Saiga: ``` ``` User: Сочини длинный рассказ, обязательно упоминая следующие объекты. Дано: Таня, мяч Saiga: ``` - dataset code revision d0d123dd221e10bb2a3383bcb1c6e4efe1b4a28a - wandb [link](https://wandb.ai/ilyagusev/rulm_self_instruct/runs/ip1qmm9p) - 5 datasets: ru_turbo_saiga, ru_sharegpt_cleaned, oasst1_ru_main_branch, gpt_roleplay_realm, ru_instruct_gpt4 - Datasets merging script: [create_short_chat_set.py](https://github.com/IlyaGusev/rulm/blob/d0d123dd221e10bb2a3383bcb1c6e4efe1b4a28a/self_instruct/src/data_processing/create_short_chat_set.py) - saiga_mistral_7b vs saiga2_13b: 243-31-141