--- license: mit base_model: cointegrated/rubert-tiny2 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: rubert-tiny2-odonata-extended-ner results: [] --- # rubert-tiny2-odonata-extended-ner This model is a fine-tuned version of [cointegrated/rubert-tiny2](https://huggingface.co./cointegrated/rubert-tiny2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0094 - Precision: 0.6364 - Recall: 0.7101 - F1: 0.6712 - Accuracy: 0.9973 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 32 | 0.1433 | 0.0 | 0.0 | 0.0 | 0.9961 | | No log | 2.0 | 64 | 0.0364 | 0.0 | 0.0 | 0.0 | 0.9961 | | No log | 3.0 | 96 | 0.0310 | 0.0 | 0.0 | 0.0 | 0.9961 | | No log | 4.0 | 128 | 0.0286 | 0.0 | 0.0 | 0.0 | 0.9961 | | No log | 5.0 | 160 | 0.0250 | 0.0 | 0.0 | 0.0 | 0.9961 | | No log | 6.0 | 192 | 0.0183 | 0.6667 | 0.0290 | 0.0556 | 0.9962 | | No log | 7.0 | 224 | 0.0141 | 0.5581 | 0.3478 | 0.4286 | 0.9965 | | No log | 8.0 | 256 | 0.0122 | 0.6111 | 0.4783 | 0.5366 | 0.9969 | | No log | 9.0 | 288 | 0.0111 | 0.6792 | 0.5217 | 0.5902 | 0.9971 | | No log | 10.0 | 320 | 0.0105 | 0.6154 | 0.5797 | 0.5970 | 0.9970 | | No log | 11.0 | 352 | 0.0101 | 0.5857 | 0.5942 | 0.5899 | 0.9971 | | No log | 12.0 | 384 | 0.0097 | 0.6143 | 0.6232 | 0.6187 | 0.9972 | | No log | 13.0 | 416 | 0.0096 | 0.6203 | 0.7101 | 0.6622 | 0.9972 | | No log | 14.0 | 448 | 0.0094 | 0.6282 | 0.7101 | 0.6667 | 0.9973 | | No log | 15.0 | 480 | 0.0094 | 0.6364 | 0.7101 | 0.6712 | 0.9973 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cpu - Datasets 2.19.2 - Tokenizers 0.19.1