--- license: gemma library_name: peft tags: - trl - sft - generated_from_trainer base_model: google/gemma-2b model-index: - name: gemma-2b-fine-tuned results: [] pipeline_tag: question-answering --- # gemma-2b-fine-tuned for learning Python Programming easy This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co./google/gemma-2b) on a very small dataset of 205 carefully datapoints on Python programming. It achieves the following results on the evaluation set: - Loss: 1.2177 ## Model description This model experiments with fine tuning a large language model for a small task which is teaching Python in simple terms ## Intended uses & limitations The model is intended to be used experimentally, it would require more data points and training to work much better ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.756 | 0.19 | 2 | 1.6592 | | 1.4272 | 0.39 | 4 | 1.6572 | | 1.6918 | 0.58 | 6 | 1.6529 | | 1.8009 | 0.77 | 8 | 1.6469 | | 1.674 | 0.96 | 10 | 1.6384 | | 1.5397 | 1.16 | 12 | 1.6273 | | 1.6255 | 1.35 | 14 | 1.6131 | | 1.5575 | 1.54 | 16 | 1.5947 | | 1.5248 | 1.73 | 18 | 1.5750 | | 1.5811 | 1.93 | 20 | 1.5545 | | 1.7426 | 2.12 | 22 | 1.5339 | | 1.5397 | 2.31 | 24 | 1.5140 | | 1.421 | 2.51 | 26 | 1.4953 | | 1.3699 | 2.7 | 28 | 1.4778 | | 1.3421 | 2.89 | 30 | 1.4616 | | 1.5048 | 3.08 | 32 | 1.4483 | | 1.3779 | 3.28 | 34 | 1.4362 | | 1.435 | 3.47 | 36 | 1.4247 | | 1.2924 | 3.66 | 38 | 1.4130 | | 1.375 | 3.86 | 40 | 1.4011 | | 1.3808 | 4.05 | 42 | 1.3894 | | 1.3854 | 4.24 | 44 | 1.3776 | | 1.2755 | 4.43 | 46 | 1.3668 | | 1.1832 | 4.63 | 48 | 1.3568 | | 1.4068 | 4.82 | 50 | 1.3473 | | 1.197 | 5.01 | 52 | 1.3383 | | 1.396 | 5.2 | 54 | 1.3300 | | 1.0756 | 5.4 | 56 | 1.3219 | | 1.164 | 5.59 | 58 | 1.3140 | | 1.2238 | 5.78 | 60 | 1.3067 | | 1.2795 | 5.98 | 62 | 1.2999 | | 1.2425 | 6.17 | 64 | 1.2940 | | 1.1914 | 6.36 | 66 | 1.2884 | | 1.2129 | 6.55 | 68 | 1.2832 | | 1.0642 | 6.75 | 70 | 1.2783 | | 1.1238 | 6.94 | 72 | 1.2736 | | 1.0442 | 7.13 | 74 | 1.2692 | | 1.1614 | 7.33 | 76 | 1.2650 | | 1.2674 | 7.52 | 78 | 1.2613 | | 0.973 | 7.71 | 80 | 1.2579 | | 1.1108 | 7.9 | 82 | 1.2551 | | 1.2114 | 8.1 | 84 | 1.2519 | | 0.9327 | 8.29 | 86 | 1.2487 | | 1.0495 | 8.48 | 88 | 1.2459 | | 1.1297 | 8.67 | 90 | 1.2434 | | 1.1777 | 8.87 | 92 | 1.2413 | | 0.9277 | 9.06 | 94 | 1.2394 | | 1.0063 | 9.25 | 96 | 1.2376 | | 1.0652 | 9.45 | 98 | 1.2359 | | 1.0928 | 9.64 | 100 | 1.2342 | | 1.0611 | 9.83 | 102 | 1.2329 | | 0.9749 | 10.02 | 104 | 1.2314 | | 0.9305 | 10.22 | 106 | 1.2300 | | 0.9944 | 10.41 | 108 | 1.2289 | | 1.1229 | 10.6 | 110 | 1.2277 | | 1.1502 | 10.8 | 112 | 1.2269 | | 0.8728 | 10.99 | 114 | 1.2261 | | 0.9504 | 11.18 | 116 | 1.2253 | | 1.0989 | 11.37 | 118 | 1.2242 | | 0.9485 | 11.57 | 120 | 1.2235 | | 1.0335 | 11.76 | 122 | 1.2227 | | 1.0332 | 11.95 | 124 | 1.2222 | | 0.8178 | 12.14 | 126 | 1.2215 | | 1.0058 | 12.34 | 128 | 1.2208 | | 1.034 | 12.53 | 130 | 1.2202 | | 0.9451 | 12.72 | 132 | 1.2197 | | 0.9163 | 12.92 | 134 | 1.2193 | | 1.173 | 13.11 | 136 | 1.2190 | | 1.0758 | 13.3 | 138 | 1.2185 | | 0.9012 | 13.49 | 140 | 1.2184 | | 0.9099 | 13.69 | 142 | 1.2180 | | 1.0 | 13.88 | 144 | 1.2180 | | 1.0032 | 14.07 | 146 | 1.2179 | | 0.991 | 14.27 | 148 | 1.2177 | | 0.8836 | 14.46 | 150 | 1.2177 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2