Andrei Panferov commited on
Commit
531a2a3
·
1 Parent(s): 8488de9

everything

Browse files
config.json ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "vocab_size": 32000,
3
+ "max_position_embeddings": 4096,
4
+ "hidden_size": 4096,
5
+ "intermediate_size": 11008,
6
+ "num_hidden_layers": 32,
7
+ "num_attention_heads": 32,
8
+ "num_key_value_heads": 32,
9
+ "hidden_act": "silu",
10
+ "initializer_range": 0.02,
11
+ "rms_norm_eps": 1e-05,
12
+ "pretraining_tp": 1,
13
+ "use_cache": true,
14
+ "rope_theta": 10000.0,
15
+ "rope_scaling": null,
16
+ "attention_bias": false,
17
+ "attention_dropout": 0.0,
18
+ "return_dict": true,
19
+ "output_hidden_states": false,
20
+ "output_attentions": false,
21
+ "torchscript": false,
22
+ "torch_dtype": "float16",
23
+ "use_bfloat16": false,
24
+ "tf_legacy_loss": false,
25
+ "pruned_heads": {},
26
+ "tie_word_embeddings": false,
27
+ "chunk_size_feed_forward": 0,
28
+ "is_encoder_decoder": false,
29
+ "is_decoder": false,
30
+ "cross_attention_hidden_size": null,
31
+ "add_cross_attention": false,
32
+ "tie_encoder_decoder": false,
33
+ "max_length": 20,
34
+ "min_length": 0,
35
+ "do_sample": false,
36
+ "early_stopping": false,
37
+ "num_beams": 1,
38
+ "num_beam_groups": 1,
39
+ "diversity_penalty": 0.0,
40
+ "temperature": 1.0,
41
+ "top_k": 50,
42
+ "top_p": 1.0,
43
+ "typical_p": 1.0,
44
+ "repetition_penalty": 1.0,
45
+ "length_penalty": 1.0,
46
+ "no_repeat_ngram_size": 0,
47
+ "encoder_no_repeat_ngram_size": 0,
48
+ "bad_words_ids": null,
49
+ "num_return_sequences": 1,
50
+ "output_scores": false,
51
+ "return_dict_in_generate": false,
52
+ "forced_bos_token_id": null,
53
+ "forced_eos_token_id": null,
54
+ "remove_invalid_values": false,
55
+ "exponential_decay_length_penalty": null,
56
+ "suppress_tokens": null,
57
+ "begin_suppress_tokens": null,
58
+ "architectures": [
59
+ "LlamaForCausalLM"
60
+ ],
61
+ "finetuning_task": null,
62
+ "id2label": {
63
+ "0": "LABEL_0",
64
+ "1": "LABEL_1"
65
+ },
66
+ "label2id": {
67
+ "LABEL_0": 0,
68
+ "LABEL_1": 1
69
+ },
70
+ "tokenizer_class": null,
71
+ "prefix": null,
72
+ "bos_token_id": 1,
73
+ "pad_token_id": null,
74
+ "eos_token_id": 2,
75
+ "sep_token_id": null,
76
+ "decoder_start_token_id": null,
77
+ "task_specific_params": null,
78
+ "problem_type": null,
79
+ "_name_or_path": "",
80
+ "transformers_version": "4.37.1",
81
+ "aqlm": {
82
+ "nbits_per_codebook": 8,
83
+ "num_codebooks": 8,
84
+ "out_group_size": 1,
85
+ "in_group_size": 32
86
+ },
87
+ "model_type": "llama_aqlm",
88
+ "auto_map": {
89
+ "AutoConfig": "configuration_llama_aqlm.LlamaConfig",
90
+ "AutoModelForCausalLM": "modeling_llama_aqlm.LlamaForCausalLM"
91
+ }
92
+ }
configuration_llama_aqlm.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import LlamaConfig as OrigLlamaConfig
2
+
3
+
4
+ class LlamaConfig(OrigLlamaConfig):
5
+ model_type = "llama_aqlm"
6
+
7
+ def __init__(
8
+ self,
9
+ aqlm: dict[str, int] = {
10
+ "nbits_per_codebook": 16,
11
+ "num_codebooks": 1,
12
+ "out_group_size": 8,
13
+ "in_group_size": 1,
14
+ },
15
+ **kwargs,
16
+ ):
17
+ super().__init__(**kwargs)
18
+ self.aqlm = aqlm
modeling_llama_aqlm.py ADDED
@@ -0,0 +1,1425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch LLaMA model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from aqlm import QuantizedLinear
29
+ from torch import nn
30
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ _prepare_4d_causal_attention_mask_for_sdpa,
38
+ )
39
+ from transformers.modeling_outputs import (
40
+ BaseModelOutputWithPast,
41
+ CausalLMOutputWithPast,
42
+ SequenceClassifierOutputWithPast,
43
+ )
44
+ from transformers.modeling_utils import PreTrainedModel
45
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
46
+ from transformers.utils import (
47
+ add_start_docstrings,
48
+ add_start_docstrings_to_model_forward,
49
+ is_flash_attn_2_available,
50
+ is_flash_attn_greater_or_equal_2_10,
51
+ logging,
52
+ replace_return_docstrings,
53
+ )
54
+ from transformers.utils.import_utils import is_torch_fx_available
55
+
56
+ from .configuration_llama_aqlm import LlamaConfig
57
+
58
+ if is_flash_attn_2_available():
59
+ try:
60
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
61
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
62
+ except:
63
+ pass
64
+
65
+
66
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
67
+ # It means that the function will not be traced through and simply appear as a node in the graph.
68
+ if is_torch_fx_available():
69
+ if not is_torch_greater_or_equal_than_1_13:
70
+ import torch.fx
71
+
72
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
73
+
74
+
75
+ logger = logging.get_logger(__name__)
76
+
77
+ _CONFIG_FOR_DOC = "LlamaConfig"
78
+
79
+
80
+ def _get_unpad_data(attention_mask):
81
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
84
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
85
+ return (
86
+ indices,
87
+ cu_seqlens,
88
+ max_seqlen_in_batch,
89
+ )
90
+
91
+
92
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
93
+ warnings.warn(
94
+ "Calling `transformers.models.llama.modeling_llama._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
95
+ )
96
+ return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
97
+
98
+
99
+ def _make_causal_mask(
100
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
101
+ ):
102
+ warnings.warn(
103
+ "Calling `transformers.models.llama.modeling_llama._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.llama.modeling_llama.AttentionMaskConverter._make_causal_mask"
104
+ )
105
+ return AttentionMaskConverter._make_causal_mask(
106
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
107
+ )
108
+
109
+
110
+ class LlamaRMSNorm(nn.Module):
111
+ def __init__(self, hidden_size, eps=1e-6):
112
+ """
113
+ LlamaRMSNorm is equivalent to T5LayerNorm
114
+ """
115
+ super().__init__()
116
+ self.weight = nn.Parameter(torch.ones(hidden_size))
117
+ self.variance_epsilon = eps
118
+
119
+ def forward(self, hidden_states):
120
+ input_dtype = hidden_states.dtype
121
+ hidden_states = hidden_states.to(torch.float32)
122
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
123
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
124
+ return self.weight * hidden_states.to(input_dtype)
125
+
126
+
127
+ ALL_LAYERNORM_LAYERS.append(LlamaRMSNorm)
128
+
129
+
130
+ class LlamaRotaryEmbedding(nn.Module):
131
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
132
+ super().__init__()
133
+
134
+ self.dim = dim
135
+ self.max_position_embeddings = max_position_embeddings
136
+ self.base = base
137
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
138
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
139
+
140
+ # Build here to make `torch.jit.trace` work.
141
+ self._set_cos_sin_cache(
142
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
143
+ )
144
+
145
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
146
+ self.max_seq_len_cached = seq_len
147
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
148
+
149
+ freqs = torch.outer(t, self.inv_freq)
150
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
151
+ emb = torch.cat((freqs, freqs), dim=-1)
152
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
153
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
154
+
155
+ def forward(self, x, seq_len=None):
156
+ # x: [bs, num_attention_heads, seq_len, head_size]
157
+ if seq_len > self.max_seq_len_cached:
158
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
159
+
160
+ return (
161
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
162
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
163
+ )
164
+
165
+
166
+ class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
167
+ """LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
168
+
169
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
170
+ self.scaling_factor = scaling_factor
171
+ super().__init__(dim, max_position_embeddings, base, device)
172
+
173
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
174
+ self.max_seq_len_cached = seq_len
175
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
176
+ t = t / self.scaling_factor
177
+
178
+ freqs = torch.outer(t, self.inv_freq)
179
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
180
+ emb = torch.cat((freqs, freqs), dim=-1)
181
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
182
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
183
+
184
+
185
+ class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
186
+ """LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
187
+
188
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
189
+ self.scaling_factor = scaling_factor
190
+ super().__init__(dim, max_position_embeddings, base, device)
191
+
192
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
193
+ self.max_seq_len_cached = seq_len
194
+
195
+ if seq_len > self.max_position_embeddings:
196
+ base = self.base * (
197
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
198
+ ) ** (self.dim / (self.dim - 2))
199
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
200
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
201
+
202
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
203
+
204
+ freqs = torch.outer(t, self.inv_freq)
205
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
206
+ emb = torch.cat((freqs, freqs), dim=-1)
207
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
208
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
209
+
210
+
211
+ def rotate_half(x):
212
+ """Rotates half the hidden dims of the input."""
213
+ x1 = x[..., : x.shape[-1] // 2]
214
+ x2 = x[..., x.shape[-1] // 2 :]
215
+ return torch.cat((-x2, x1), dim=-1)
216
+
217
+
218
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
219
+ """Applies Rotary Position Embedding to the query and key tensors.
220
+
221
+ Args:
222
+ q (`torch.Tensor`): The query tensor.
223
+ k (`torch.Tensor`): The key tensor.
224
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
225
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
226
+ position_ids (`torch.Tensor`):
227
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
228
+ used to pass offsetted position ids when working with a KV-cache.
229
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
230
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
231
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
232
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
233
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
234
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
235
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
236
+ Returns:
237
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
238
+ """
239
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
240
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
241
+ q_embed = (q * cos) + (rotate_half(q) * sin)
242
+ k_embed = (k * cos) + (rotate_half(k) * sin)
243
+ return q_embed, k_embed
244
+
245
+
246
+ class LlamaMLP(nn.Module):
247
+ def __init__(self, config):
248
+ super().__init__()
249
+ self.config = config
250
+ self.hidden_size = config.hidden_size
251
+ self.intermediate_size = config.intermediate_size
252
+ self.gate_proj = QuantizedLinear(self.hidden_size, self.intermediate_size, bias=False, **config.aqlm)
253
+ self.up_proj = QuantizedLinear(self.hidden_size, self.intermediate_size, bias=False, **config.aqlm)
254
+ self.down_proj = QuantizedLinear(self.intermediate_size, self.hidden_size, bias=False, **config.aqlm)
255
+ self.act_fn = ACT2FN[config.hidden_act]
256
+
257
+ def forward(self, x):
258
+ if self.config.pretraining_tp > 1:
259
+ slice = self.intermediate_size // self.config.pretraining_tp
260
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
261
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
262
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
263
+
264
+ gate_proj = torch.cat([F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
265
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
266
+
267
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
268
+ down_proj = [
269
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
270
+ ]
271
+ down_proj = sum(down_proj)
272
+ else:
273
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
274
+
275
+ return down_proj
276
+
277
+
278
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
279
+ """
280
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
281
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
282
+ """
283
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
284
+ if n_rep == 1:
285
+ return hidden_states
286
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
287
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
288
+
289
+
290
+ class LlamaAttention(nn.Module):
291
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
292
+
293
+ def __init__(self, config: LlamaConfig, layer_idx: Optional[int] = None):
294
+ super().__init__()
295
+ self.config = config
296
+ self.layer_idx = layer_idx
297
+ if layer_idx is None:
298
+ logger.warning_once(
299
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
300
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
301
+ "when creating this class."
302
+ )
303
+
304
+ self.attention_dropout = config.attention_dropout
305
+ self.hidden_size = config.hidden_size
306
+ self.num_heads = config.num_attention_heads
307
+ self.head_dim = self.hidden_size // self.num_heads
308
+ self.num_key_value_heads = config.num_key_value_heads
309
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
310
+ self.max_position_embeddings = config.max_position_embeddings
311
+ self.rope_theta = config.rope_theta
312
+ self.is_causal = True
313
+
314
+ if (self.head_dim * self.num_heads) != self.hidden_size:
315
+ raise ValueError(
316
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
317
+ f" and `num_heads`: {self.num_heads})."
318
+ )
319
+
320
+ self.q_proj = QuantizedLinear(
321
+ self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias, **config.aqlm
322
+ )
323
+ self.k_proj = QuantizedLinear(
324
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias, **config.aqlm
325
+ )
326
+ self.v_proj = QuantizedLinear(
327
+ self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias, **config.aqlm
328
+ )
329
+ self.o_proj = QuantizedLinear(
330
+ self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias, **config.aqlm
331
+ )
332
+ self._init_rope()
333
+
334
+ def _init_rope(self):
335
+ if self.config.rope_scaling is None:
336
+ self.rotary_emb = LlamaRotaryEmbedding(
337
+ self.head_dim,
338
+ max_position_embeddings=self.max_position_embeddings,
339
+ base=self.rope_theta,
340
+ )
341
+ else:
342
+ scaling_type = self.config.rope_scaling["type"]
343
+ scaling_factor = self.config.rope_scaling["factor"]
344
+ if scaling_type == "linear":
345
+ self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
346
+ self.head_dim,
347
+ max_position_embeddings=self.max_position_embeddings,
348
+ scaling_factor=scaling_factor,
349
+ base=self.rope_theta,
350
+ )
351
+ elif scaling_type == "dynamic":
352
+ self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
353
+ self.head_dim,
354
+ max_position_embeddings=self.max_position_embeddings,
355
+ scaling_factor=scaling_factor,
356
+ base=self.rope_theta,
357
+ )
358
+ else:
359
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
360
+
361
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
362
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
363
+
364
+ def forward(
365
+ self,
366
+ hidden_states: torch.Tensor,
367
+ attention_mask: Optional[torch.Tensor] = None,
368
+ position_ids: Optional[torch.LongTensor] = None,
369
+ past_key_value: Optional[Cache] = None,
370
+ output_attentions: bool = False,
371
+ use_cache: bool = False,
372
+ **kwargs,
373
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
374
+ if "padding_mask" in kwargs:
375
+ warnings.warn(
376
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
377
+ )
378
+
379
+ bsz, q_len, _ = hidden_states.size()
380
+
381
+ if self.config.pretraining_tp > 1:
382
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
383
+ query_slices = self.q_proj.weight.split(
384
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
385
+ )
386
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
387
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
388
+
389
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
390
+ query_states = torch.cat(query_states, dim=-1)
391
+
392
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
393
+ key_states = torch.cat(key_states, dim=-1)
394
+
395
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
396
+ value_states = torch.cat(value_states, dim=-1)
397
+
398
+ else:
399
+ query_states = self.q_proj(hidden_states)
400
+ key_states = self.k_proj(hidden_states)
401
+ value_states = self.v_proj(hidden_states)
402
+
403
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
404
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
405
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
406
+
407
+ kv_seq_len = key_states.shape[-2]
408
+ if past_key_value is not None:
409
+ if self.layer_idx is None:
410
+ raise ValueError(
411
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
412
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
413
+ "with a layer index."
414
+ )
415
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
416
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
417
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
418
+
419
+ if past_key_value is not None:
420
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
421
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
422
+
423
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
424
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
425
+
426
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
427
+
428
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
429
+ raise ValueError(
430
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
431
+ f" {attn_weights.size()}"
432
+ )
433
+
434
+ if attention_mask is not None:
435
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
436
+ raise ValueError(
437
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
438
+ )
439
+ attn_weights = attn_weights + attention_mask
440
+
441
+ # upcast attention to fp32
442
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
443
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
444
+ attn_output = torch.matmul(attn_weights, value_states)
445
+
446
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
447
+ raise ValueError(
448
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
449
+ f" {attn_output.size()}"
450
+ )
451
+
452
+ attn_output = attn_output.transpose(1, 2).contiguous()
453
+
454
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
455
+
456
+ if self.config.pretraining_tp > 1:
457
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
458
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
459
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
460
+ else:
461
+ attn_output = self.o_proj(attn_output)
462
+
463
+ if not output_attentions:
464
+ attn_weights = None
465
+
466
+ return attn_output, attn_weights, past_key_value
467
+
468
+
469
+ class LlamaFlashAttention2(LlamaAttention):
470
+ """
471
+ Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
472
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
473
+ flash attention and deal with padding tokens in case the input contains any of them.
474
+ """
475
+
476
+ def __init__(self, *args, **kwargs):
477
+ super().__init__(*args, **kwargs)
478
+
479
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
480
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
481
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
482
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
483
+
484
+ def forward(
485
+ self,
486
+ hidden_states: torch.Tensor,
487
+ attention_mask: Optional[torch.LongTensor] = None,
488
+ position_ids: Optional[torch.LongTensor] = None,
489
+ past_key_value: Optional[Cache] = None,
490
+ output_attentions: bool = False,
491
+ use_cache: bool = False,
492
+ **kwargs,
493
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
494
+ # LlamaFlashAttention2 attention does not support output_attentions
495
+ if "padding_mask" in kwargs:
496
+ warnings.warn(
497
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
498
+ )
499
+
500
+ # overwrite attention_mask with padding_mask
501
+ attention_mask = kwargs.pop("padding_mask")
502
+
503
+ output_attentions = False
504
+
505
+ bsz, q_len, _ = hidden_states.size()
506
+
507
+ query_states = self.q_proj(hidden_states)
508
+ key_states = self.k_proj(hidden_states)
509
+ value_states = self.v_proj(hidden_states)
510
+
511
+ # Flash attention requires the input to have the shape
512
+ # batch_size x seq_length x head_dim x hidden_dim
513
+ # therefore we just need to keep the original shape
514
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
515
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
516
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
517
+
518
+ kv_seq_len = key_states.shape[-2]
519
+ if past_key_value is not None:
520
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
521
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
522
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
523
+
524
+ if past_key_value is not None:
525
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
526
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
527
+
528
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
529
+ # to be able to avoid many of these transpose/reshape/view.
530
+ query_states = query_states.transpose(1, 2)
531
+ key_states = key_states.transpose(1, 2)
532
+ value_states = value_states.transpose(1, 2)
533
+
534
+ dropout_rate = self.attention_dropout if self.training else 0.0
535
+
536
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
537
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
538
+ # cast them back in the correct dtype just to be sure everything works as expected.
539
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
540
+ # in fp32. (LlamaRMSNorm handles it correctly)
541
+
542
+ input_dtype = query_states.dtype
543
+ if input_dtype == torch.float32:
544
+ # Handle the case where the model is quantized
545
+ if hasattr(self.config, "_pre_quantization_dtype"):
546
+ target_dtype = self.config._pre_quantization_dtype
547
+ else:
548
+ target_dtype = self.q_proj.weight.dtype
549
+
550
+ logger.warning_once(
551
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
552
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
553
+ f" {target_dtype}."
554
+ )
555
+
556
+ query_states = query_states.to(target_dtype)
557
+ key_states = key_states.to(target_dtype)
558
+ value_states = value_states.to(target_dtype)
559
+
560
+ attn_output = self._flash_attention_forward(
561
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
562
+ )
563
+
564
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
565
+ attn_output = self.o_proj(attn_output)
566
+
567
+ if not output_attentions:
568
+ attn_weights = None
569
+
570
+ return attn_output, attn_weights, past_key_value
571
+
572
+ def _flash_attention_forward(
573
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
574
+ ):
575
+ """
576
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
577
+ first unpad the input, then computes the attention scores and pad the final attention scores.
578
+
579
+ Args:
580
+ query_states (`torch.Tensor`):
581
+ Input query states to be passed to Flash Attention API
582
+ key_states (`torch.Tensor`):
583
+ Input key states to be passed to Flash Attention API
584
+ value_states (`torch.Tensor`):
585
+ Input value states to be passed to Flash Attention API
586
+ attention_mask (`torch.Tensor`):
587
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
588
+ position of padding tokens and 1 for the position of non-padding tokens.
589
+ dropout (`int`, *optional*):
590
+ Attention dropout
591
+ softmax_scale (`float`, *optional*):
592
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
593
+ """
594
+ if not self._flash_attn_uses_top_left_mask:
595
+ causal = self.is_causal
596
+ else:
597
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
598
+ causal = self.is_causal and query_length != 1
599
+
600
+ # Contains at least one padding token in the sequence
601
+ if attention_mask is not None:
602
+ batch_size = query_states.shape[0]
603
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
604
+ query_states, key_states, value_states, attention_mask, query_length
605
+ )
606
+
607
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
608
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
609
+
610
+ attn_output_unpad = flash_attn_varlen_func(
611
+ query_states,
612
+ key_states,
613
+ value_states,
614
+ cu_seqlens_q=cu_seqlens_q,
615
+ cu_seqlens_k=cu_seqlens_k,
616
+ max_seqlen_q=max_seqlen_in_batch_q,
617
+ max_seqlen_k=max_seqlen_in_batch_k,
618
+ dropout_p=dropout,
619
+ softmax_scale=softmax_scale,
620
+ causal=causal,
621
+ )
622
+
623
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
624
+ else:
625
+ attn_output = flash_attn_func(
626
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
627
+ )
628
+
629
+ return attn_output
630
+
631
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
632
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
633
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
634
+
635
+ key_layer = index_first_axis(
636
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
637
+ )
638
+ value_layer = index_first_axis(
639
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
640
+ )
641
+ if query_length == kv_seq_len:
642
+ query_layer = index_first_axis(
643
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
644
+ )
645
+ cu_seqlens_q = cu_seqlens_k
646
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
647
+ indices_q = indices_k
648
+ elif query_length == 1:
649
+ max_seqlen_in_batch_q = 1
650
+ cu_seqlens_q = torch.arange(
651
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
652
+ ) # There is a memcpy here, that is very bad.
653
+ indices_q = cu_seqlens_q[:-1]
654
+ query_layer = query_layer.squeeze(1)
655
+ else:
656
+ # The -q_len: slice assumes left padding.
657
+ attention_mask = attention_mask[:, -query_length:]
658
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
659
+
660
+ return (
661
+ query_layer,
662
+ key_layer,
663
+ value_layer,
664
+ indices_q,
665
+ (cu_seqlens_q, cu_seqlens_k),
666
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
667
+ )
668
+
669
+
670
+ class LlamaSdpaAttention(LlamaAttention):
671
+ """
672
+ Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
673
+ `LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
674
+ SDPA API.
675
+ """
676
+
677
+ # Adapted from LlamaAttention.forward
678
+ def forward(
679
+ self,
680
+ hidden_states: torch.Tensor,
681
+ attention_mask: Optional[torch.Tensor] = None,
682
+ position_ids: Optional[torch.LongTensor] = None,
683
+ past_key_value: Optional[Cache] = None,
684
+ output_attentions: bool = False,
685
+ use_cache: bool = False,
686
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
687
+ if output_attentions:
688
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
689
+ logger.warning_once(
690
+ "LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
691
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
692
+ )
693
+ return super().forward(
694
+ hidden_states=hidden_states,
695
+ attention_mask=attention_mask,
696
+ position_ids=position_ids,
697
+ past_key_value=past_key_value,
698
+ output_attentions=output_attentions,
699
+ use_cache=use_cache,
700
+ )
701
+
702
+ bsz, q_len, _ = hidden_states.size()
703
+
704
+ query_states = self.q_proj(hidden_states)
705
+ key_states = self.k_proj(hidden_states)
706
+ value_states = self.v_proj(hidden_states)
707
+
708
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
709
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
710
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
711
+
712
+ kv_seq_len = key_states.shape[-2]
713
+ if past_key_value is not None:
714
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
715
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
716
+
717
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
718
+
719
+ if past_key_value is not None:
720
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
721
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
722
+
723
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
724
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
725
+
726
+ if attention_mask is not None:
727
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
728
+ raise ValueError(
729
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
730
+ )
731
+
732
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
733
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
734
+ if query_states.device.type == "cuda" and attention_mask is not None:
735
+ query_states = query_states.contiguous()
736
+ key_states = key_states.contiguous()
737
+ value_states = value_states.contiguous()
738
+
739
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
740
+ query_states,
741
+ key_states,
742
+ value_states,
743
+ attn_mask=attention_mask,
744
+ dropout_p=self.attention_dropout if self.training else 0.0,
745
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
746
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
747
+ )
748
+
749
+ attn_output = attn_output.transpose(1, 2).contiguous()
750
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
751
+
752
+ attn_output = self.o_proj(attn_output)
753
+
754
+ return attn_output, None, past_key_value
755
+
756
+
757
+ LLAMA_ATTENTION_CLASSES = {
758
+ "eager": LlamaAttention,
759
+ "flash_attention_2": LlamaFlashAttention2,
760
+ "sdpa": LlamaSdpaAttention,
761
+ }
762
+
763
+
764
+ class LlamaDecoderLayer(nn.Module):
765
+ def __init__(self, config: LlamaConfig, layer_idx: int):
766
+ super().__init__()
767
+ self.hidden_size = config.hidden_size
768
+
769
+ self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
770
+
771
+ self.mlp = LlamaMLP(config)
772
+ self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
773
+ self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
774
+
775
+ def forward(
776
+ self,
777
+ hidden_states: torch.Tensor,
778
+ attention_mask: Optional[torch.Tensor] = None,
779
+ position_ids: Optional[torch.LongTensor] = None,
780
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
781
+ output_attentions: Optional[bool] = False,
782
+ use_cache: Optional[bool] = False,
783
+ **kwargs,
784
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
785
+ """
786
+ Args:
787
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
788
+ attention_mask (`torch.FloatTensor`, *optional*):
789
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
790
+ query_sequence_length, key_sequence_length)` if default attention is used.
791
+ output_attentions (`bool`, *optional*):
792
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
793
+ returned tensors for more detail.
794
+ use_cache (`bool`, *optional*):
795
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
796
+ (see `past_key_values`).
797
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
798
+ """
799
+ if "padding_mask" in kwargs:
800
+ warnings.warn(
801
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
802
+ )
803
+
804
+ residual = hidden_states
805
+
806
+ hidden_states = self.input_layernorm(hidden_states)
807
+
808
+ # Self Attention
809
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
810
+ hidden_states=hidden_states,
811
+ attention_mask=attention_mask,
812
+ position_ids=position_ids,
813
+ past_key_value=past_key_value,
814
+ output_attentions=output_attentions,
815
+ use_cache=use_cache,
816
+ **kwargs,
817
+ )
818
+ hidden_states = residual + hidden_states
819
+
820
+ # Fully Connected
821
+ residual = hidden_states
822
+ hidden_states = self.post_attention_layernorm(hidden_states)
823
+ hidden_states = self.mlp(hidden_states)
824
+ hidden_states = residual + hidden_states
825
+
826
+ outputs = (hidden_states,)
827
+
828
+ if output_attentions:
829
+ outputs += (self_attn_weights,)
830
+
831
+ if use_cache:
832
+ outputs += (present_key_value,)
833
+
834
+ return outputs
835
+
836
+
837
+ LLAMA_START_DOCSTRING = r"""
838
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
839
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
840
+ etc.)
841
+
842
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
843
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
844
+ and behavior.
845
+
846
+ Parameters:
847
+ config ([`LlamaConfig`]):
848
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
849
+ load the weights associated with the model, only the configuration. Check out the
850
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
851
+ """
852
+
853
+
854
+ @add_start_docstrings(
855
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
856
+ LLAMA_START_DOCSTRING,
857
+ )
858
+ class LlamaPreTrainedModel(PreTrainedModel):
859
+ config_class = LlamaConfig
860
+ base_model_prefix = "model"
861
+ supports_gradient_checkpointing = True
862
+ _no_split_modules = ["LlamaDecoderLayer"]
863
+ _skip_keys_device_placement = "past_key_values"
864
+ _supports_flash_attn_2 = True
865
+ _supports_sdpa = True
866
+ _supports_cache_class = True
867
+
868
+ def _init_weights(self, module):
869
+ std = self.config.initializer_range
870
+ if isinstance(module, nn.Linear):
871
+ module.weight.data.normal_(mean=0.0, std=std)
872
+ if module.bias is not None:
873
+ module.bias.data.zero_()
874
+ elif isinstance(module, nn.Embedding):
875
+ module.weight.data.normal_(mean=0.0, std=std)
876
+ if module.padding_idx is not None:
877
+ module.weight.data[module.padding_idx].zero_()
878
+
879
+
880
+ LLAMA_INPUTS_DOCSTRING = r"""
881
+ Args:
882
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
883
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
884
+ it.
885
+
886
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
887
+ [`PreTrainedTokenizer.__call__`] for details.
888
+
889
+ [What are input IDs?](../glossary#input-ids)
890
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
891
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
892
+
893
+ - 1 for tokens that are **not masked**,
894
+ - 0 for tokens that are **masked**.
895
+
896
+ [What are attention masks?](../glossary#attention-mask)
897
+
898
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
899
+ [`PreTrainedTokenizer.__call__`] for details.
900
+
901
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
902
+ `past_key_values`).
903
+
904
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
905
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
906
+ information on the default strategy.
907
+
908
+ - 1 indicates the head is **not masked**,
909
+ - 0 indicates the head is **masked**.
910
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
911
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
912
+ config.n_positions - 1]`.
913
+
914
+ [What are position IDs?](../glossary#position-ids)
915
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
916
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
917
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
918
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
919
+
920
+ Two formats are allowed:
921
+ - a [`~cache_utils.Cache`] instance;
922
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
923
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
924
+ cache format.
925
+
926
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
927
+ legacy cache format will be returned.
928
+
929
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
930
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
931
+ of shape `(batch_size, sequence_length)`.
932
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
933
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
934
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
935
+ model's internal embedding lookup matrix.
936
+ use_cache (`bool`, *optional*):
937
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
938
+ `past_key_values`).
939
+ output_attentions (`bool`, *optional*):
940
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
941
+ tensors for more detail.
942
+ output_hidden_states (`bool`, *optional*):
943
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
944
+ more detail.
945
+ return_dict (`bool`, *optional*):
946
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
947
+ """
948
+
949
+
950
+ @add_start_docstrings(
951
+ "The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
952
+ LLAMA_START_DOCSTRING,
953
+ )
954
+ class LlamaModel(LlamaPreTrainedModel):
955
+ """
956
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
957
+
958
+ Args:
959
+ config: LlamaConfig
960
+ """
961
+
962
+ def __init__(self, config: LlamaConfig):
963
+ super().__init__(config)
964
+ self.padding_idx = config.pad_token_id
965
+ self.vocab_size = config.vocab_size
966
+
967
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
968
+ self.layers = nn.ModuleList(
969
+ [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
970
+ )
971
+ self._use_sdpa = config._attn_implementation == "sdpa"
972
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
973
+ self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
974
+
975
+ self.gradient_checkpointing = False
976
+ # Initialize weights and apply final processing
977
+ self.post_init()
978
+
979
+ def get_input_embeddings(self):
980
+ return self.embed_tokens
981
+
982
+ def set_input_embeddings(self, value):
983
+ self.embed_tokens = value
984
+
985
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
986
+ def forward(
987
+ self,
988
+ input_ids: torch.LongTensor = None,
989
+ attention_mask: Optional[torch.Tensor] = None,
990
+ position_ids: Optional[torch.LongTensor] = None,
991
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
992
+ inputs_embeds: Optional[torch.FloatTensor] = None,
993
+ use_cache: Optional[bool] = None,
994
+ output_attentions: Optional[bool] = None,
995
+ output_hidden_states: Optional[bool] = None,
996
+ return_dict: Optional[bool] = None,
997
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
998
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
999
+ output_hidden_states = (
1000
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1001
+ )
1002
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1003
+
1004
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1005
+
1006
+ # retrieve input_ids and inputs_embeds
1007
+ if input_ids is not None and inputs_embeds is not None:
1008
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1009
+ elif input_ids is not None:
1010
+ batch_size, seq_length = input_ids.shape[:2]
1011
+ elif inputs_embeds is not None:
1012
+ batch_size, seq_length = inputs_embeds.shape[:2]
1013
+ else:
1014
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1015
+
1016
+ if self.gradient_checkpointing and self.training:
1017
+ if use_cache:
1018
+ logger.warning_once(
1019
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1020
+ )
1021
+ use_cache = False
1022
+
1023
+ past_key_values_length = 0
1024
+ if use_cache:
1025
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1026
+ if use_legacy_cache:
1027
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1028
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1029
+
1030
+ if position_ids is None:
1031
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1032
+ position_ids = torch.arange(
1033
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1034
+ )
1035
+ position_ids = position_ids.unsqueeze(0)
1036
+
1037
+ if inputs_embeds is None:
1038
+ inputs_embeds = self.embed_tokens(input_ids)
1039
+
1040
+ if self._use_flash_attention_2:
1041
+ # 2d mask is passed through the layers
1042
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1043
+ elif self._use_sdpa and not output_attentions:
1044
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1045
+ # the manual implementation that requires a 4D causal mask in all cases.
1046
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1047
+ attention_mask,
1048
+ (batch_size, seq_length),
1049
+ inputs_embeds,
1050
+ past_key_values_length,
1051
+ )
1052
+ else:
1053
+ # 4d mask is passed through the layers
1054
+ attention_mask = _prepare_4d_causal_attention_mask(
1055
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1056
+ )
1057
+
1058
+ # embed positions
1059
+ hidden_states = inputs_embeds
1060
+
1061
+ # decoder layers
1062
+ all_hidden_states = () if output_hidden_states else None
1063
+ all_self_attns = () if output_attentions else None
1064
+ next_decoder_cache = None
1065
+
1066
+ for decoder_layer in self.layers:
1067
+ if output_hidden_states:
1068
+ all_hidden_states += (hidden_states,)
1069
+
1070
+ if self.gradient_checkpointing and self.training:
1071
+ layer_outputs = self._gradient_checkpointing_func(
1072
+ decoder_layer.__call__,
1073
+ hidden_states,
1074
+ attention_mask,
1075
+ position_ids,
1076
+ past_key_values,
1077
+ output_attentions,
1078
+ use_cache,
1079
+ )
1080
+ else:
1081
+ layer_outputs = decoder_layer(
1082
+ hidden_states,
1083
+ attention_mask=attention_mask,
1084
+ position_ids=position_ids,
1085
+ past_key_value=past_key_values,
1086
+ output_attentions=output_attentions,
1087
+ use_cache=use_cache,
1088
+ )
1089
+
1090
+ hidden_states = layer_outputs[0]
1091
+
1092
+ if use_cache:
1093
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1094
+
1095
+ if output_attentions:
1096
+ all_self_attns += (layer_outputs[1],)
1097
+
1098
+ hidden_states = self.norm(hidden_states)
1099
+
1100
+ # add hidden states from the last decoder layer
1101
+ if output_hidden_states:
1102
+ all_hidden_states += (hidden_states,)
1103
+
1104
+ next_cache = None
1105
+ if use_cache:
1106
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1107
+ if not return_dict:
1108
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1109
+ return BaseModelOutputWithPast(
1110
+ last_hidden_state=hidden_states,
1111
+ past_key_values=next_cache,
1112
+ hidden_states=all_hidden_states,
1113
+ attentions=all_self_attns,
1114
+ )
1115
+
1116
+
1117
+ class LlamaForCausalLM(LlamaPreTrainedModel):
1118
+ _tied_weights_keys = ["lm_head.weight"]
1119
+
1120
+ def __init__(self, config):
1121
+ super().__init__(config)
1122
+ self.model = LlamaModel(config)
1123
+ self.vocab_size = config.vocab_size
1124
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1125
+
1126
+ # Initialize weights and apply final processing
1127
+ self.post_init()
1128
+
1129
+ def get_input_embeddings(self):
1130
+ return self.model.embed_tokens
1131
+
1132
+ def set_input_embeddings(self, value):
1133
+ self.model.embed_tokens = value
1134
+
1135
+ def get_output_embeddings(self):
1136
+ return self.lm_head
1137
+
1138
+ def set_output_embeddings(self, new_embeddings):
1139
+ self.lm_head = new_embeddings
1140
+
1141
+ def set_decoder(self, decoder):
1142
+ self.model = decoder
1143
+
1144
+ def get_decoder(self):
1145
+ return self.model
1146
+
1147
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1148
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1149
+ def forward(
1150
+ self,
1151
+ input_ids: torch.LongTensor = None,
1152
+ attention_mask: Optional[torch.Tensor] = None,
1153
+ position_ids: Optional[torch.LongTensor] = None,
1154
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1155
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1156
+ labels: Optional[torch.LongTensor] = None,
1157
+ use_cache: Optional[bool] = None,
1158
+ output_attentions: Optional[bool] = None,
1159
+ output_hidden_states: Optional[bool] = None,
1160
+ return_dict: Optional[bool] = None,
1161
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1162
+ r"""
1163
+ Args:
1164
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1165
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1166
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1167
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1168
+
1169
+ Returns:
1170
+
1171
+ Example:
1172
+
1173
+ ```python
1174
+ >>> from transformers import AutoTokenizer, LlamaForCausalLM
1175
+
1176
+ >>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1177
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1178
+
1179
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1180
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1181
+
1182
+ >>> # Generate
1183
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1184
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1185
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1186
+ ```"""
1187
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1188
+ output_hidden_states = (
1189
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1190
+ )
1191
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1192
+
1193
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1194
+ outputs = self.model(
1195
+ input_ids=input_ids,
1196
+ attention_mask=attention_mask,
1197
+ position_ids=position_ids,
1198
+ past_key_values=past_key_values,
1199
+ inputs_embeds=inputs_embeds,
1200
+ use_cache=use_cache,
1201
+ output_attentions=output_attentions,
1202
+ output_hidden_states=output_hidden_states,
1203
+ return_dict=return_dict,
1204
+ )
1205
+
1206
+ hidden_states = outputs[0]
1207
+ if self.config.pretraining_tp > 1:
1208
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1209
+ logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1210
+ logits = torch.cat(logits, dim=-1)
1211
+ else:
1212
+ logits = self.lm_head(hidden_states)
1213
+ logits = logits.float()
1214
+
1215
+ loss = None
1216
+ if labels is not None:
1217
+ # Shift so that tokens < n predict n
1218
+ shift_logits = logits[..., :-1, :].contiguous()
1219
+ shift_labels = labels[..., 1:].contiguous()
1220
+ # Flatten the tokens
1221
+ loss_fct = CrossEntropyLoss()
1222
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1223
+ shift_labels = shift_labels.view(-1)
1224
+ # Enable model parallelism
1225
+ shift_labels = shift_labels.to(shift_logits.device)
1226
+ loss = loss_fct(shift_logits, shift_labels)
1227
+
1228
+ if not return_dict:
1229
+ output = (logits,) + outputs[1:]
1230
+ return (loss,) + output if loss is not None else output
1231
+
1232
+ return CausalLMOutputWithPast(
1233
+ loss=loss,
1234
+ logits=logits,
1235
+ past_key_values=outputs.past_key_values,
1236
+ hidden_states=outputs.hidden_states,
1237
+ attentions=outputs.attentions,
1238
+ )
1239
+
1240
+ def prepare_inputs_for_generation(
1241
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1242
+ ):
1243
+ if past_key_values is not None:
1244
+ if isinstance(past_key_values, Cache):
1245
+ cache_length = past_key_values.get_seq_length()
1246
+ past_length = past_key_values.seen_tokens
1247
+ max_cache_length = past_key_values.get_max_length()
1248
+ else:
1249
+ cache_length = past_length = past_key_values[0][0].shape[2]
1250
+ max_cache_length = None
1251
+
1252
+ # Keep only the unprocessed tokens:
1253
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1254
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1255
+ # input)
1256
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1257
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1258
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1259
+ # input_ids based on the past_length.
1260
+ elif past_length < input_ids.shape[1]:
1261
+ input_ids = input_ids[:, past_length:]
1262
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1263
+
1264
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1265
+ if (
1266
+ max_cache_length is not None
1267
+ and attention_mask is not None
1268
+ and cache_length + input_ids.shape[1] > max_cache_length
1269
+ ):
1270
+ attention_mask = attention_mask[:, -max_cache_length:]
1271
+
1272
+ position_ids = kwargs.get("position_ids", None)
1273
+ if attention_mask is not None and position_ids is None:
1274
+ # create position_ids on the fly for batch generation
1275
+ position_ids = attention_mask.long().cumsum(-1) - 1
1276
+ position_ids.masked_fill_(attention_mask == 0, 1)
1277
+ if past_key_values:
1278
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1279
+
1280
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1281
+ if inputs_embeds is not None and past_key_values is None:
1282
+ model_inputs = {"inputs_embeds": inputs_embeds}
1283
+ else:
1284
+ model_inputs = {"input_ids": input_ids}
1285
+
1286
+ model_inputs.update(
1287
+ {
1288
+ "position_ids": position_ids,
1289
+ "past_key_values": past_key_values,
1290
+ "use_cache": kwargs.get("use_cache"),
1291
+ "attention_mask": attention_mask,
1292
+ }
1293
+ )
1294
+ return model_inputs
1295
+
1296
+ @staticmethod
1297
+ def _reorder_cache(past_key_values, beam_idx):
1298
+ reordered_past = ()
1299
+ for layer_past in past_key_values:
1300
+ reordered_past += (
1301
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1302
+ )
1303
+ return reordered_past
1304
+
1305
+
1306
+ @add_start_docstrings(
1307
+ """
1308
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
1309
+
1310
+ [`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1311
+ (e.g. GPT-2) do.
1312
+
1313
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1314
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1315
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1316
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1317
+ each row of the batch).
1318
+ """,
1319
+ LLAMA_START_DOCSTRING,
1320
+ )
1321
+ class LlamaForSequenceClassification(LlamaPreTrainedModel):
1322
+ def __init__(self, config):
1323
+ super().__init__(config)
1324
+ self.num_labels = config.num_labels
1325
+ self.model = LlamaModel(config)
1326
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1327
+
1328
+ # Initialize weights and apply final processing
1329
+ self.post_init()
1330
+
1331
+ def get_input_embeddings(self):
1332
+ return self.model.embed_tokens
1333
+
1334
+ def set_input_embeddings(self, value):
1335
+ self.model.embed_tokens = value
1336
+
1337
+ @add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
1338
+ def forward(
1339
+ self,
1340
+ input_ids: torch.LongTensor = None,
1341
+ attention_mask: Optional[torch.Tensor] = None,
1342
+ position_ids: Optional[torch.LongTensor] = None,
1343
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1344
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1345
+ labels: Optional[torch.LongTensor] = None,
1346
+ use_cache: Optional[bool] = None,
1347
+ output_attentions: Optional[bool] = None,
1348
+ output_hidden_states: Optional[bool] = None,
1349
+ return_dict: Optional[bool] = None,
1350
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1351
+ r"""
1352
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1353
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1354
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1355
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1356
+ """
1357
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1358
+
1359
+ transformer_outputs = self.model(
1360
+ input_ids,
1361
+ attention_mask=attention_mask,
1362
+ position_ids=position_ids,
1363
+ past_key_values=past_key_values,
1364
+ inputs_embeds=inputs_embeds,
1365
+ use_cache=use_cache,
1366
+ output_attentions=output_attentions,
1367
+ output_hidden_states=output_hidden_states,
1368
+ return_dict=return_dict,
1369
+ )
1370
+ hidden_states = transformer_outputs[0]
1371
+ logits = self.score(hidden_states)
1372
+
1373
+ if input_ids is not None:
1374
+ batch_size = input_ids.shape[0]
1375
+ else:
1376
+ batch_size = inputs_embeds.shape[0]
1377
+
1378
+ if self.config.pad_token_id is None and batch_size != 1:
1379
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1380
+ if self.config.pad_token_id is None:
1381
+ sequence_lengths = -1
1382
+ else:
1383
+ if input_ids is not None:
1384
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1385
+ logits.device
1386
+ )
1387
+ else:
1388
+ sequence_lengths = -1
1389
+
1390
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1391
+
1392
+ loss = None
1393
+ if labels is not None:
1394
+ labels = labels.to(logits.device)
1395
+ if self.config.problem_type is None:
1396
+ if self.num_labels == 1:
1397
+ self.config.problem_type = "regression"
1398
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1399
+ self.config.problem_type = "single_label_classification"
1400
+ else:
1401
+ self.config.problem_type = "multi_label_classification"
1402
+
1403
+ if self.config.problem_type == "regression":
1404
+ loss_fct = MSELoss()
1405
+ if self.num_labels == 1:
1406
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1407
+ else:
1408
+ loss = loss_fct(pooled_logits, labels)
1409
+ elif self.config.problem_type == "single_label_classification":
1410
+ loss_fct = CrossEntropyLoss()
1411
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1412
+ elif self.config.problem_type == "multi_label_classification":
1413
+ loss_fct = BCEWithLogitsLoss()
1414
+ loss = loss_fct(pooled_logits, labels)
1415
+ if not return_dict:
1416
+ output = (pooled_logits,) + transformer_outputs[1:]
1417
+ return ((loss,) + output) if loss is not None else output
1418
+
1419
+ return SequenceClassifierOutputWithPast(
1420
+ loss=loss,
1421
+ logits=pooled_logits,
1422
+ past_key_values=transformer_outputs.past_key_values,
1423
+ hidden_states=transformer_outputs.hidden_states,
1424
+ attentions=transformer_outputs.attentions,
1425
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48f8e0f1511c380879a54599e7ee2c457fb93c1fafd27a2e40801c3459b93f7d
3
+ size 2176156694