major-katsurAGI commited on
Commit
050fd32
·
verified ·
1 Parent(s): 92395eb

chore: Clear out repo again

Browse files
original/BiRefNet_config.py DELETED
@@ -1,11 +0,0 @@
1
- from transformers import PretrainedConfig
2
-
3
- class BiRefNetConfig(PretrainedConfig):
4
- model_type = "SegformerForSemanticSegmentation"
5
- def __init__(
6
- self,
7
- bb_pretrained=False,
8
- **kwargs
9
- ):
10
- self.bb_pretrained = bb_pretrained
11
- super().__init__(**kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
original/README.md DELETED
@@ -1,176 +0,0 @@
1
- ---
2
- library_name: birefnet
3
- tags:
4
- - background-removal
5
- - mask-generation
6
- - Dichotomous Image Segmentation
7
- - Camouflaged Object Detection
8
- - Salient Object Detection
9
- - pytorch_model_hub_mixin
10
- - model_hub_mixin
11
- repo_url: https://github.com/ZhengPeng7/BiRefNet
12
- pipeline_tag: image-segmentation
13
- license: mit
14
- ---
15
- <h1 align="center">Bilateral Reference for High-Resolution Dichotomous Image Segmentation</h1>
16
-
17
- <div align='center'>
18
- <a href='https://scholar.google.com/citations?user=TZRzWOsAAAAJ' target='_blank'><strong>Peng Zheng</strong></a><sup> 1,4,5,6</sup>,&thinsp;
19
- <a href='https://scholar.google.com/citations?user=0uPb8MMAAAAJ' target='_blank'><strong>Dehong Gao</strong></a><sup> 2</sup>,&thinsp;
20
- <a href='https://scholar.google.com/citations?user=kakwJ5QAAAAJ' target='_blank'><strong>Deng-Ping Fan</strong></a><sup> 1*</sup>,&thinsp;
21
- <a href='https://scholar.google.com/citations?user=9cMQrVsAAAAJ' target='_blank'><strong>Li Liu</strong></a><sup> 3</sup>,&thinsp;
22
- <a href='https://scholar.google.com/citations?user=qQP6WXIAAAAJ' target='_blank'><strong>Jorma Laaksonen</strong></a><sup> 4</sup>,&thinsp;
23
- <a href='https://scholar.google.com/citations?user=pw_0Z_UAAAAJ' target='_blank'><strong>Wanli Ouyang</strong></a><sup> 5</sup>,&thinsp;
24
- <a href='https://scholar.google.com/citations?user=stFCYOAAAAAJ' target='_blank'><strong>Nicu Sebe</strong></a><sup> 6</sup>
25
- </div>
26
-
27
- <div align='center'>
28
- <sup>1 </sup>Nankai University&ensp; <sup>2 </sup>Northwestern Polytechnical University&ensp; <sup>3 </sup>National University of Defense Technology&ensp; <sup>4 </sup>Aalto University&ensp; <sup>5 </sup>Shanghai AI Laboratory&ensp; <sup>6 </sup>University of Trento&ensp;
29
- </div>
30
-
31
- <div align="center" style="display: flex; justify-content: center; flex-wrap: wrap;">
32
- <a href='https://www.sciopen.com/article/pdf/10.26599/AIR.2024.9150038.pdf'><img src='https://img.shields.io/badge/Journal-Paper-red'></a>&ensp;
33
- <a href='https://arxiv.org/pdf/2401.03407'><img src='https://img.shields.io/badge/arXiv-BiRefNet-red'></a>&ensp;
34
- <a href='https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link'><img src='https://img.shields.io/badge/中文版-BiRefNet-red'></a>&ensp;
35
- <a href='https://www.birefnet.top'><img src='https://img.shields.io/badge/Page-BiRefNet-red'></a>&ensp;
36
- <a href='https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM'><img src='https://img.shields.io/badge/Drive-Stuff-green'></a>&ensp;
37
- <a href='LICENSE'><img src='https://img.shields.io/badge/License-MIT-yellow'></a>&ensp;
38
- <a href='https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Spaces-BiRefNet-blue'></a>&ensp;
39
- <a href='https://huggingface.co/ZhengPeng7/BiRefNet'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HF%20Models-BiRefNet-blue'></a>&ensp;
40
- <a href='https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link'><img src='https://img.shields.io/badge/Single_Image_Inference-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>&ensp;
41
- <a href='https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S'><img src='https://img.shields.io/badge/Inference_&_Evaluation-F9AB00?style=for-the-badge&logo=googlecolab&color=525252'></a>&ensp;
42
- </div>
43
-
44
-
45
- | *DIS-Sample_1* | *DIS-Sample_2* |
46
- | :------------------------------: | :-------------------------------: |
47
- | <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
48
-
49
- This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___CAAI AIR 2024___).
50
-
51
- Visit our GitHub repo: [https://github.com/ZhengPeng7/BiRefNet](https://github.com/ZhengPeng7/BiRefNet) for more details -- **codes**, **docs**, and **model zoo**!
52
-
53
- ## How to use
54
-
55
- ### 0. Install Packages:
56
- ```
57
- pip install -qr https://raw.githubusercontent.com/ZhengPeng7/BiRefNet/main/requirements.txt
58
- ```
59
-
60
- ### 1. Load BiRefNet:
61
-
62
- #### Use codes + weights from HuggingFace
63
- > Only use the weights on HuggingFace -- Pro: No need to download BiRefNet codes manually; Con: Codes on HuggingFace might not be latest version (I'll try to keep them always latest).
64
-
65
- ```python
66
- # Load BiRefNet with weights
67
- from transformers import AutoModelForImageSegmentation
68
- birefnet = AutoModelForImageSegmentation.from_pretrained('ZhengPeng7/BiRefNet', trust_remote_code=True)
69
- ```
70
-
71
- #### Use codes from GitHub + weights from HuggingFace
72
- > Only use the weights on HuggingFace -- Pro: codes are always latest; Con: Need to clone the BiRefNet repo from my GitHub.
73
-
74
- ```shell
75
- # Download codes
76
- git clone https://github.com/ZhengPeng7/BiRefNet.git
77
- cd BiRefNet
78
- ```
79
-
80
- ```python
81
- # Use codes locally
82
- from models.birefnet import BiRefNet
83
-
84
- # Load weights from Hugging Face Models
85
- birefnet = BiRefNet.from_pretrained('ZhengPeng7/BiRefNet')
86
- ```
87
-
88
- #### Use codes from GitHub + weights from local space
89
- > Only use the weights and codes both locally.
90
-
91
- ```python
92
- # Use codes and weights locally
93
- import torch
94
- from utils import check_state_dict
95
-
96
- birefnet = BiRefNet(bb_pretrained=False)
97
- state_dict = torch.load(PATH_TO_WEIGHT, map_location='cpu')
98
- state_dict = check_state_dict(state_dict)
99
- birefnet.load_state_dict(state_dict)
100
- ```
101
-
102
- #### Use the loaded BiRefNet for inference
103
- ```python
104
- # Imports
105
- from PIL import Image
106
- import matplotlib.pyplot as plt
107
- import torch
108
- from torchvision import transforms
109
- from models.birefnet import BiRefNet
110
-
111
- birefnet = ... # -- BiRefNet should be loaded with codes above, either way.
112
- torch.set_float32_matmul_precision(['high', 'highest'][0])
113
- birefnet.to('cuda')
114
- birefnet.eval()
115
-
116
- def extract_object(birefnet, imagepath):
117
- # Data settings
118
- image_size = (1024, 1024)
119
- transform_image = transforms.Compose([
120
- transforms.Resize(image_size),
121
- transforms.ToTensor(),
122
- transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
123
- ])
124
-
125
- image = Image.open(imagepath)
126
- input_images = transform_image(image).unsqueeze(0).to('cuda')
127
-
128
- # Prediction
129
- with torch.no_grad():
130
- preds = birefnet(input_images)[-1].sigmoid().cpu()
131
- pred = preds[0].squeeze()
132
- pred_pil = transforms.ToPILImage()(pred)
133
- mask = pred_pil.resize(image.size)
134
- image.putalpha(mask)
135
- return image, mask
136
-
137
- # Visualization
138
- plt.axis("off")
139
- plt.imshow(extract_object(birefnet, imagepath='PATH-TO-YOUR_IMAGE.jpg')[0])
140
- plt.show()
141
-
142
- ```
143
-
144
-
145
- > This BiRefNet for standard dichotomous image segmentation (DIS) is trained on **DIS-TR** and validated on **DIS-TEs and DIS-VD**.
146
-
147
- ## This repo holds the official model weights of "[<ins>Bilateral Reference for High-Resolution Dichotomous Image Segmentation</ins>](https://arxiv.org/pdf/2401.03407)" (_CAAI AIR 2024_).
148
-
149
- This repo contains the weights of BiRefNet proposed in our paper, which has achieved the SOTA performance on three tasks (DIS, HRSOD, and COD).
150
-
151
- Go to my GitHub page for BiRefNet codes and the latest updates: https://github.com/ZhengPeng7/BiRefNet :)
152
-
153
-
154
- #### Try our online demos for inference:
155
-
156
- + Online **Image Inference** on Colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
157
- + **Online Inference with GUI on Hugging Face** with adjustable resolutions: [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)
158
- + **Inference and evaluation** of your given weights: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
159
- <img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1080" />
160
-
161
- ## Acknowledgement:
162
-
163
- + Many thanks to @fal for their generous support on GPU resources for training better BiRefNet models.
164
- + Many thanks to @not-lain for his help on the better deployment of our BiRefNet model on HuggingFace.
165
-
166
-
167
- ## Citation
168
-
169
- ```
170
- @article{BiRefNet,
171
- title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
172
- author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
173
- journal={CAAI Artificial Intelligence Research},
174
- year={2024}
175
- }
176
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
original/__init__.py DELETED
File without changes
original/birefnet.py DELETED
@@ -1,2244 +0,0 @@
1
- ### config.py
2
-
3
- import os
4
- import math
5
-
6
-
7
- class Config():
8
- def __init__(self) -> None:
9
- # PATH settings
10
- self.sys_home_dir = os.path.expanduser('~') # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
11
-
12
- # TASK settings
13
- self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
14
- self.training_set = {
15
- 'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
16
- 'COD': 'TR-COD10K+TR-CAMO',
17
- 'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
18
- 'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', # leave DIS-VD for evaluation.
19
- 'P3M-10k': 'TR-P3M-10k',
20
- }[self.task]
21
- self.prompt4loc = ['dense', 'sparse'][0]
22
-
23
- # Faster-Training settings
24
- self.load_all = True
25
- self.compile = True # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
26
- # Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
27
- # 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
28
- # 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
29
- self.precisionHigh = True
30
-
31
- # MODEL settings
32
- self.ms_supervision = True
33
- self.out_ref = self.ms_supervision and True
34
- self.dec_ipt = True
35
- self.dec_ipt_split = True
36
- self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
37
- self.mul_scl_ipt = ['', 'add', 'cat'][2]
38
- self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
39
- self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
40
- self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
41
-
42
- # TRAINING settings
43
- self.batch_size = 4
44
- self.IoU_finetune_last_epochs = [
45
- 0,
46
- {
47
- 'DIS5K': -50,
48
- 'COD': -20,
49
- 'HRSOD': -20,
50
- 'DIS5K+HRSOD+HRS10K': -20,
51
- 'P3M-10k': -20,
52
- }[self.task]
53
- ][1] # choose 0 to skip
54
- self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
55
- self.size = 1024
56
- self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader
57
-
58
- # Backbone settings
59
- self.bb = [
60
- 'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
61
- 'swin_v1_t', 'swin_v1_s', # 3, 4
62
- 'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
63
- 'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
64
- 'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
65
- ][6]
66
- self.lateral_channels_in_collection = {
67
- 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
68
- 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
69
- 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
70
- 'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
71
- 'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
72
- }[self.bb]
73
- if self.mul_scl_ipt == 'cat':
74
- self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
75
- self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
76
-
77
- # MODEL settings - inactive
78
- self.lat_blk = ['BasicLatBlk'][0]
79
- self.dec_channels_inter = ['fixed', 'adap'][0]
80
- self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
81
- self.progressive_ref = self.refine and True
82
- self.ender = self.progressive_ref and False
83
- self.scale = self.progressive_ref and 2
84
- self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
85
- self.refine_iteration = 1
86
- self.freeze_bb = False
87
- self.model = [
88
- 'BiRefNet',
89
- ][0]
90
- if self.dec_blk == 'HierarAttDecBlk':
91
- self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
92
-
93
- # TRAINING settings - inactive
94
- self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
95
- self.optimizer = ['Adam', 'AdamW'][1]
96
- self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
97
- self.lr_decay_rate = 0.5
98
- # Loss
99
- self.lambdas_pix_last = {
100
- # not 0 means opening this loss
101
- # original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
102
- 'bce': 30 * 1, # high performance
103
- 'iou': 0.5 * 1, # 0 / 255
104
- 'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
105
- 'mse': 150 * 0, # can smooth the saliency map
106
- 'triplet': 3 * 0,
107
- 'reg': 100 * 0,
108
- 'ssim': 10 * 1, # help contours,
109
- 'cnt': 5 * 0, # help contours
110
- 'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
111
- }
112
- self.lambdas_cls = {
113
- 'ce': 5.0
114
- }
115
- # Adv
116
- self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
117
- self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
118
-
119
- # PATH settings - inactive
120
- self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
121
- self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
122
- self.weights = {
123
- 'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
124
- 'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
125
- 'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
126
- 'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
127
- 'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
128
- 'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
129
- 'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
130
- 'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
131
- }
132
-
133
- # Callbacks - inactive
134
- self.verbose_eval = True
135
- self.only_S_MAE = False
136
- self.use_fp16 = False # Bugs. It may cause nan in training.
137
- self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs
138
-
139
- # others
140
- self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')
141
-
142
- self.batch_size_valid = 1
143
- self.rand_seed = 7
144
- # run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
145
- # with open(run_sh_file[0], 'r') as f:
146
- # lines = f.readlines()
147
- # self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
148
- # self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
149
- # self.val_step = [0, self.save_step][0]
150
-
151
- def print_task(self) -> None:
152
- # Return task for choosing settings in shell scripts.
153
- print(self.task)
154
-
155
-
156
-
157
- ### models/backbones/pvt_v2.py
158
-
159
- import torch
160
- import torch.nn as nn
161
- from functools import partial
162
-
163
- from timm.models.layers import DropPath, to_2tuple, trunc_normal_
164
- from timm.models.registry import register_model
165
-
166
- import math
167
-
168
- # from config import Config
169
-
170
- # config = Config()
171
-
172
- class Mlp(nn.Module):
173
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
174
- super().__init__()
175
- out_features = out_features or in_features
176
- hidden_features = hidden_features or in_features
177
- self.fc1 = nn.Linear(in_features, hidden_features)
178
- self.dwconv = DWConv(hidden_features)
179
- self.act = act_layer()
180
- self.fc2 = nn.Linear(hidden_features, out_features)
181
- self.drop = nn.Dropout(drop)
182
-
183
- self.apply(self._init_weights)
184
-
185
- def _init_weights(self, m):
186
- if isinstance(m, nn.Linear):
187
- trunc_normal_(m.weight, std=.02)
188
- if isinstance(m, nn.Linear) and m.bias is not None:
189
- nn.init.constant_(m.bias, 0)
190
- elif isinstance(m, nn.LayerNorm):
191
- nn.init.constant_(m.bias, 0)
192
- nn.init.constant_(m.weight, 1.0)
193
- elif isinstance(m, nn.Conv2d):
194
- fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
195
- fan_out //= m.groups
196
- m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
197
- if m.bias is not None:
198
- m.bias.data.zero_()
199
-
200
- def forward(self, x, H, W):
201
- x = self.fc1(x)
202
- x = self.dwconv(x, H, W)
203
- x = self.act(x)
204
- x = self.drop(x)
205
- x = self.fc2(x)
206
- x = self.drop(x)
207
- return x
208
-
209
-
210
- class Attention(nn.Module):
211
- def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
212
- super().__init__()
213
- assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
214
-
215
- self.dim = dim
216
- self.num_heads = num_heads
217
- head_dim = dim // num_heads
218
- self.scale = qk_scale or head_dim ** -0.5
219
-
220
- self.q = nn.Linear(dim, dim, bias=qkv_bias)
221
- self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
222
- self.attn_drop_prob = attn_drop
223
- self.attn_drop = nn.Dropout(attn_drop)
224
- self.proj = nn.Linear(dim, dim)
225
- self.proj_drop = nn.Dropout(proj_drop)
226
-
227
- self.sr_ratio = sr_ratio
228
- if sr_ratio > 1:
229
- self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
230
- self.norm = nn.LayerNorm(dim)
231
-
232
- self.apply(self._init_weights)
233
-
234
- def _init_weights(self, m):
235
- if isinstance(m, nn.Linear):
236
- trunc_normal_(m.weight, std=.02)
237
- if isinstance(m, nn.Linear) and m.bias is not None:
238
- nn.init.constant_(m.bias, 0)
239
- elif isinstance(m, nn.LayerNorm):
240
- nn.init.constant_(m.bias, 0)
241
- nn.init.constant_(m.weight, 1.0)
242
- elif isinstance(m, nn.Conv2d):
243
- fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
244
- fan_out //= m.groups
245
- m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
246
- if m.bias is not None:
247
- m.bias.data.zero_()
248
-
249
- def forward(self, x, H, W):
250
- B, N, C = x.shape
251
- q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
252
-
253
- if self.sr_ratio > 1:
254
- x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
255
- x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
256
- x_ = self.norm(x_)
257
- kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
258
- else:
259
- kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
260
- k, v = kv[0], kv[1]
261
-
262
- if config.SDPA_enabled:
263
- x = torch.nn.functional.scaled_dot_product_attention(
264
- q, k, v,
265
- attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
266
- ).transpose(1, 2).reshape(B, N, C)
267
- else:
268
- attn = (q @ k.transpose(-2, -1)) * self.scale
269
- attn = attn.softmax(dim=-1)
270
- attn = self.attn_drop(attn)
271
-
272
- x = (attn @ v).transpose(1, 2).reshape(B, N, C)
273
- x = self.proj(x)
274
- x = self.proj_drop(x)
275
-
276
- return x
277
-
278
-
279
- class Block(nn.Module):
280
-
281
- def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
282
- drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
283
- super().__init__()
284
- self.norm1 = norm_layer(dim)
285
- self.attn = Attention(
286
- dim,
287
- num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
288
- attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
289
- # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
290
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
291
- self.norm2 = norm_layer(dim)
292
- mlp_hidden_dim = int(dim * mlp_ratio)
293
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
294
-
295
- self.apply(self._init_weights)
296
-
297
- def _init_weights(self, m):
298
- if isinstance(m, nn.Linear):
299
- trunc_normal_(m.weight, std=.02)
300
- if isinstance(m, nn.Linear) and m.bias is not None:
301
- nn.init.constant_(m.bias, 0)
302
- elif isinstance(m, nn.LayerNorm):
303
- nn.init.constant_(m.bias, 0)
304
- nn.init.constant_(m.weight, 1.0)
305
- elif isinstance(m, nn.Conv2d):
306
- fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
307
- fan_out //= m.groups
308
- m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
309
- if m.bias is not None:
310
- m.bias.data.zero_()
311
-
312
- def forward(self, x, H, W):
313
- x = x + self.drop_path(self.attn(self.norm1(x), H, W))
314
- x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
315
-
316
- return x
317
-
318
-
319
- class OverlapPatchEmbed(nn.Module):
320
- """ Image to Patch Embedding
321
- """
322
-
323
- def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
324
- super().__init__()
325
- img_size = to_2tuple(img_size)
326
- patch_size = to_2tuple(patch_size)
327
-
328
- self.img_size = img_size
329
- self.patch_size = patch_size
330
- self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
331
- self.num_patches = self.H * self.W
332
- self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
333
- padding=(patch_size[0] // 2, patch_size[1] // 2))
334
- self.norm = nn.LayerNorm(embed_dim)
335
-
336
- self.apply(self._init_weights)
337
-
338
- def _init_weights(self, m):
339
- if isinstance(m, nn.Linear):
340
- trunc_normal_(m.weight, std=.02)
341
- if isinstance(m, nn.Linear) and m.bias is not None:
342
- nn.init.constant_(m.bias, 0)
343
- elif isinstance(m, nn.LayerNorm):
344
- nn.init.constant_(m.bias, 0)
345
- nn.init.constant_(m.weight, 1.0)
346
- elif isinstance(m, nn.Conv2d):
347
- fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
348
- fan_out //= m.groups
349
- m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
350
- if m.bias is not None:
351
- m.bias.data.zero_()
352
-
353
- def forward(self, x):
354
- x = self.proj(x)
355
- _, _, H, W = x.shape
356
- x = x.flatten(2).transpose(1, 2)
357
- x = self.norm(x)
358
-
359
- return x, H, W
360
-
361
-
362
- class PyramidVisionTransformerImpr(nn.Module):
363
- def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
364
- num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
365
- attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
366
- depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
367
- super().__init__()
368
- self.num_classes = num_classes
369
- self.depths = depths
370
-
371
- # patch_embed
372
- self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
373
- embed_dim=embed_dims[0])
374
- self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
375
- embed_dim=embed_dims[1])
376
- self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
377
- embed_dim=embed_dims[2])
378
- self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
379
- embed_dim=embed_dims[3])
380
-
381
- # transformer encoder
382
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
383
- cur = 0
384
- self.block1 = nn.ModuleList([Block(
385
- dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
386
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
387
- sr_ratio=sr_ratios[0])
388
- for i in range(depths[0])])
389
- self.norm1 = norm_layer(embed_dims[0])
390
-
391
- cur += depths[0]
392
- self.block2 = nn.ModuleList([Block(
393
- dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
394
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
395
- sr_ratio=sr_ratios[1])
396
- for i in range(depths[1])])
397
- self.norm2 = norm_layer(embed_dims[1])
398
-
399
- cur += depths[1]
400
- self.block3 = nn.ModuleList([Block(
401
- dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
402
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
403
- sr_ratio=sr_ratios[2])
404
- for i in range(depths[2])])
405
- self.norm3 = norm_layer(embed_dims[2])
406
-
407
- cur += depths[2]
408
- self.block4 = nn.ModuleList([Block(
409
- dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
410
- drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
411
- sr_ratio=sr_ratios[3])
412
- for i in range(depths[3])])
413
- self.norm4 = norm_layer(embed_dims[3])
414
-
415
- # classification head
416
- # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
417
-
418
- self.apply(self._init_weights)
419
-
420
- def _init_weights(self, m):
421
- if isinstance(m, nn.Linear):
422
- trunc_normal_(m.weight, std=.02)
423
- if isinstance(m, nn.Linear) and m.bias is not None:
424
- nn.init.constant_(m.bias, 0)
425
- elif isinstance(m, nn.LayerNorm):
426
- nn.init.constant_(m.bias, 0)
427
- nn.init.constant_(m.weight, 1.0)
428
- elif isinstance(m, nn.Conv2d):
429
- fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
430
- fan_out //= m.groups
431
- m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
432
- if m.bias is not None:
433
- m.bias.data.zero_()
434
-
435
- def init_weights(self, pretrained=None):
436
- if isinstance(pretrained, str):
437
- logger = 1
438
- #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
439
-
440
- def reset_drop_path(self, drop_path_rate):
441
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
442
- cur = 0
443
- for i in range(self.depths[0]):
444
- self.block1[i].drop_path.drop_prob = dpr[cur + i]
445
-
446
- cur += self.depths[0]
447
- for i in range(self.depths[1]):
448
- self.block2[i].drop_path.drop_prob = dpr[cur + i]
449
-
450
- cur += self.depths[1]
451
- for i in range(self.depths[2]):
452
- self.block3[i].drop_path.drop_prob = dpr[cur + i]
453
-
454
- cur += self.depths[2]
455
- for i in range(self.depths[3]):
456
- self.block4[i].drop_path.drop_prob = dpr[cur + i]
457
-
458
- def freeze_patch_emb(self):
459
- self.patch_embed1.requires_grad = False
460
-
461
- @torch.jit.ignore
462
- def no_weight_decay(self):
463
- return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
464
-
465
- def get_classifier(self):
466
- return self.head
467
-
468
- def reset_classifier(self, num_classes, global_pool=''):
469
- self.num_classes = num_classes
470
- self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
471
-
472
- def forward_features(self, x):
473
- B = x.shape[0]
474
- outs = []
475
-
476
- # stage 1
477
- x, H, W = self.patch_embed1(x)
478
- for i, blk in enumerate(self.block1):
479
- x = blk(x, H, W)
480
- x = self.norm1(x)
481
- x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
482
- outs.append(x)
483
-
484
- # stage 2
485
- x, H, W = self.patch_embed2(x)
486
- for i, blk in enumerate(self.block2):
487
- x = blk(x, H, W)
488
- x = self.norm2(x)
489
- x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
490
- outs.append(x)
491
-
492
- # stage 3
493
- x, H, W = self.patch_embed3(x)
494
- for i, blk in enumerate(self.block3):
495
- x = blk(x, H, W)
496
- x = self.norm3(x)
497
- x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
498
- outs.append(x)
499
-
500
- # stage 4
501
- x, H, W = self.patch_embed4(x)
502
- for i, blk in enumerate(self.block4):
503
- x = blk(x, H, W)
504
- x = self.norm4(x)
505
- x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
506
- outs.append(x)
507
-
508
- return outs
509
-
510
- # return x.mean(dim=1)
511
-
512
- def forward(self, x):
513
- x = self.forward_features(x)
514
- # x = self.head(x)
515
-
516
- return x
517
-
518
-
519
- class DWConv(nn.Module):
520
- def __init__(self, dim=768):
521
- super(DWConv, self).__init__()
522
- self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
523
-
524
- def forward(self, x, H, W):
525
- B, N, C = x.shape
526
- x = x.transpose(1, 2).view(B, C, H, W).contiguous()
527
- x = self.dwconv(x)
528
- x = x.flatten(2).transpose(1, 2)
529
-
530
- return x
531
-
532
-
533
- def _conv_filter(state_dict, patch_size=16):
534
- """ convert patch embedding weight from manual patchify + linear proj to conv"""
535
- out_dict = {}
536
- for k, v in state_dict.items():
537
- if 'patch_embed.proj.weight' in k:
538
- v = v.reshape((v.shape[0], 3, patch_size, patch_size))
539
- out_dict[k] = v
540
-
541
- return out_dict
542
-
543
-
544
- ## @register_model
545
- class pvt_v2_b0(PyramidVisionTransformerImpr):
546
- def __init__(self, **kwargs):
547
- super(pvt_v2_b0, self).__init__(
548
- patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
549
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
550
- drop_rate=0.0, drop_path_rate=0.1)
551
-
552
-
553
-
554
- ## @register_model
555
- class pvt_v2_b1(PyramidVisionTransformerImpr):
556
- def __init__(self, **kwargs):
557
- super(pvt_v2_b1, self).__init__(
558
- patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
559
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
560
- drop_rate=0.0, drop_path_rate=0.1)
561
-
562
- ## @register_model
563
- class pvt_v2_b2(PyramidVisionTransformerImpr):
564
- def __init__(self, in_channels=3, **kwargs):
565
- super(pvt_v2_b2, self).__init__(
566
- patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
567
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
568
- drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
569
-
570
- ## @register_model
571
- class pvt_v2_b3(PyramidVisionTransformerImpr):
572
- def __init__(self, **kwargs):
573
- super(pvt_v2_b3, self).__init__(
574
- patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
575
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
576
- drop_rate=0.0, drop_path_rate=0.1)
577
-
578
- ## @register_model
579
- class pvt_v2_b4(PyramidVisionTransformerImpr):
580
- def __init__(self, **kwargs):
581
- super(pvt_v2_b4, self).__init__(
582
- patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
583
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
584
- drop_rate=0.0, drop_path_rate=0.1)
585
-
586
-
587
- ## @register_model
588
- class pvt_v2_b5(PyramidVisionTransformerImpr):
589
- def __init__(self, **kwargs):
590
- super(pvt_v2_b5, self).__init__(
591
- patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
592
- qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
593
- drop_rate=0.0, drop_path_rate=0.1)
594
-
595
-
596
-
597
- ### models/backbones/swin_v1.py
598
-
599
- # --------------------------------------------------------
600
- # Swin Transformer
601
- # Copyright (c) 2021 Microsoft
602
- # Licensed under The MIT License [see LICENSE for details]
603
- # Written by Ze Liu, Yutong Lin, Yixuan Wei
604
- # --------------------------------------------------------
605
-
606
- import torch
607
- import torch.nn as nn
608
- import torch.nn.functional as F
609
- import torch.utils.checkpoint as checkpoint
610
- import numpy as np
611
- from timm.models.layers import DropPath, to_2tuple, trunc_normal_
612
-
613
- # from config import Config
614
-
615
-
616
- # config = Config()
617
-
618
- class Mlp(nn.Module):
619
- """ Multilayer perceptron."""
620
-
621
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
622
- super().__init__()
623
- out_features = out_features or in_features
624
- hidden_features = hidden_features or in_features
625
- self.fc1 = nn.Linear(in_features, hidden_features)
626
- self.act = act_layer()
627
- self.fc2 = nn.Linear(hidden_features, out_features)
628
- self.drop = nn.Dropout(drop)
629
-
630
- def forward(self, x):
631
- x = self.fc1(x)
632
- x = self.act(x)
633
- x = self.drop(x)
634
- x = self.fc2(x)
635
- x = self.drop(x)
636
- return x
637
-
638
-
639
- def window_partition(x, window_size):
640
- """
641
- Args:
642
- x: (B, H, W, C)
643
- window_size (int): window size
644
-
645
- Returns:
646
- windows: (num_windows*B, window_size, window_size, C)
647
- """
648
- B, H, W, C = x.shape
649
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
650
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
651
- return windows
652
-
653
-
654
- def window_reverse(windows, window_size, H, W):
655
- """
656
- Args:
657
- windows: (num_windows*B, window_size, window_size, C)
658
- window_size (int): Window size
659
- H (int): Height of image
660
- W (int): Width of image
661
-
662
- Returns:
663
- x: (B, H, W, C)
664
- """
665
- B = int(windows.shape[0] / (H * W / window_size / window_size))
666
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
667
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
668
- return x
669
-
670
-
671
- class WindowAttention(nn.Module):
672
- """ Window based multi-head self attention (W-MSA) module with relative position bias.
673
- It supports both of shifted and non-shifted window.
674
-
675
- Args:
676
- dim (int): Number of input channels.
677
- window_size (tuple[int]): The height and width of the window.
678
- num_heads (int): Number of attention heads.
679
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
680
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
681
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
682
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
683
- """
684
-
685
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
686
-
687
- super().__init__()
688
- self.dim = dim
689
- self.window_size = window_size # Wh, Ww
690
- self.num_heads = num_heads
691
- head_dim = dim // num_heads
692
- self.scale = qk_scale or head_dim ** -0.5
693
-
694
- # define a parameter table of relative position bias
695
- self.relative_position_bias_table = nn.Parameter(
696
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
697
-
698
- # get pair-wise relative position index for each token inside the window
699
- coords_h = torch.arange(self.window_size[0])
700
- coords_w = torch.arange(self.window_size[1])
701
- coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
702
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
703
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
704
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
705
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
706
- relative_coords[:, :, 1] += self.window_size[1] - 1
707
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
708
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
709
- self.register_buffer("relative_position_index", relative_position_index)
710
-
711
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
712
- self.attn_drop_prob = attn_drop
713
- self.attn_drop = nn.Dropout(attn_drop)
714
- self.proj = nn.Linear(dim, dim)
715
- self.proj_drop = nn.Dropout(proj_drop)
716
-
717
- trunc_normal_(self.relative_position_bias_table, std=.02)
718
- self.softmax = nn.Softmax(dim=-1)
719
-
720
- def forward(self, x, mask=None):
721
- """ Forward function.
722
-
723
- Args:
724
- x: input features with shape of (num_windows*B, N, C)
725
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
726
- """
727
- B_, N, C = x.shape
728
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
729
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
730
-
731
- q = q * self.scale
732
-
733
- if config.SDPA_enabled:
734
- x = torch.nn.functional.scaled_dot_product_attention(
735
- q, k, v,
736
- attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
737
- ).transpose(1, 2).reshape(B_, N, C)
738
- else:
739
- attn = (q @ k.transpose(-2, -1))
740
-
741
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
742
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
743
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
744
- attn = attn + relative_position_bias.unsqueeze(0)
745
-
746
- if mask is not None:
747
- nW = mask.shape[0]
748
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
749
- attn = attn.view(-1, self.num_heads, N, N)
750
- attn = self.softmax(attn)
751
- else:
752
- attn = self.softmax(attn)
753
-
754
- attn = self.attn_drop(attn)
755
-
756
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
757
- x = self.proj(x)
758
- x = self.proj_drop(x)
759
- return x
760
-
761
-
762
- class SwinTransformerBlock(nn.Module):
763
- """ Swin Transformer Block.
764
-
765
- Args:
766
- dim (int): Number of input channels.
767
- num_heads (int): Number of attention heads.
768
- window_size (int): Window size.
769
- shift_size (int): Shift size for SW-MSA.
770
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
771
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
772
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
773
- drop (float, optional): Dropout rate. Default: 0.0
774
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
775
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
776
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
777
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
778
- """
779
-
780
- def __init__(self, dim, num_heads, window_size=7, shift_size=0,
781
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
782
- act_layer=nn.GELU, norm_layer=nn.LayerNorm):
783
- super().__init__()
784
- self.dim = dim
785
- self.num_heads = num_heads
786
- self.window_size = window_size
787
- self.shift_size = shift_size
788
- self.mlp_ratio = mlp_ratio
789
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
790
-
791
- self.norm1 = norm_layer(dim)
792
- self.attn = WindowAttention(
793
- dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
794
- qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
795
-
796
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
797
- self.norm2 = norm_layer(dim)
798
- mlp_hidden_dim = int(dim * mlp_ratio)
799
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
800
-
801
- self.H = None
802
- self.W = None
803
-
804
- def forward(self, x, mask_matrix):
805
- """ Forward function.
806
-
807
- Args:
808
- x: Input feature, tensor size (B, H*W, C).
809
- H, W: Spatial resolution of the input feature.
810
- mask_matrix: Attention mask for cyclic shift.
811
- """
812
- B, L, C = x.shape
813
- H, W = self.H, self.W
814
- assert L == H * W, "input feature has wrong size"
815
-
816
- shortcut = x
817
- x = self.norm1(x)
818
- x = x.view(B, H, W, C)
819
-
820
- # pad feature maps to multiples of window size
821
- pad_l = pad_t = 0
822
- pad_r = (self.window_size - W % self.window_size) % self.window_size
823
- pad_b = (self.window_size - H % self.window_size) % self.window_size
824
- x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
825
- _, Hp, Wp, _ = x.shape
826
-
827
- # cyclic shift
828
- if self.shift_size > 0:
829
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
830
- attn_mask = mask_matrix
831
- else:
832
- shifted_x = x
833
- attn_mask = None
834
-
835
- # partition windows
836
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
837
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
838
-
839
- # W-MSA/SW-MSA
840
- attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
841
-
842
- # merge windows
843
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
844
- shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
845
-
846
- # reverse cyclic shift
847
- if self.shift_size > 0:
848
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
849
- else:
850
- x = shifted_x
851
-
852
- if pad_r > 0 or pad_b > 0:
853
- x = x[:, :H, :W, :].contiguous()
854
-
855
- x = x.view(B, H * W, C)
856
-
857
- # FFN
858
- x = shortcut + self.drop_path(x)
859
- x = x + self.drop_path(self.mlp(self.norm2(x)))
860
-
861
- return x
862
-
863
-
864
- class PatchMerging(nn.Module):
865
- """ Patch Merging Layer
866
-
867
- Args:
868
- dim (int): Number of input channels.
869
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
870
- """
871
- def __init__(self, dim, norm_layer=nn.LayerNorm):
872
- super().__init__()
873
- self.dim = dim
874
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
875
- self.norm = norm_layer(4 * dim)
876
-
877
- def forward(self, x, H, W):
878
- """ Forward function.
879
-
880
- Args:
881
- x: Input feature, tensor size (B, H*W, C).
882
- H, W: Spatial resolution of the input feature.
883
- """
884
- B, L, C = x.shape
885
- assert L == H * W, "input feature has wrong size"
886
-
887
- x = x.view(B, H, W, C)
888
-
889
- # padding
890
- pad_input = (H % 2 == 1) or (W % 2 == 1)
891
- if pad_input:
892
- x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
893
-
894
- x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
895
- x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
896
- x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
897
- x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
898
- x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
899
- x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
900
-
901
- x = self.norm(x)
902
- x = self.reduction(x)
903
-
904
- return x
905
-
906
-
907
- class BasicLayer(nn.Module):
908
- """ A basic Swin Transformer layer for one stage.
909
-
910
- Args:
911
- dim (int): Number of feature channels
912
- depth (int): Depths of this stage.
913
- num_heads (int): Number of attention head.
914
- window_size (int): Local window size. Default: 7.
915
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
916
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
917
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
918
- drop (float, optional): Dropout rate. Default: 0.0
919
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
920
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
921
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
922
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
923
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
924
- """
925
-
926
- def __init__(self,
927
- dim,
928
- depth,
929
- num_heads,
930
- window_size=7,
931
- mlp_ratio=4.,
932
- qkv_bias=True,
933
- qk_scale=None,
934
- drop=0.,
935
- attn_drop=0.,
936
- drop_path=0.,
937
- norm_layer=nn.LayerNorm,
938
- downsample=None,
939
- use_checkpoint=False):
940
- super().__init__()
941
- self.window_size = window_size
942
- self.shift_size = window_size // 2
943
- self.depth = depth
944
- self.use_checkpoint = use_checkpoint
945
-
946
- # build blocks
947
- self.blocks = nn.ModuleList([
948
- SwinTransformerBlock(
949
- dim=dim,
950
- num_heads=num_heads,
951
- window_size=window_size,
952
- shift_size=0 if (i % 2 == 0) else window_size // 2,
953
- mlp_ratio=mlp_ratio,
954
- qkv_bias=qkv_bias,
955
- qk_scale=qk_scale,
956
- drop=drop,
957
- attn_drop=attn_drop,
958
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
959
- norm_layer=norm_layer)
960
- for i in range(depth)])
961
-
962
- # patch merging layer
963
- if downsample is not None:
964
- self.downsample = downsample(dim=dim, norm_layer=norm_layer)
965
- else:
966
- self.downsample = None
967
-
968
- def forward(self, x, H, W):
969
- """ Forward function.
970
-
971
- Args:
972
- x: Input feature, tensor size (B, H*W, C).
973
- H, W: Spatial resolution of the input feature.
974
- """
975
-
976
- # calculate attention mask for SW-MSA
977
- Hp = int(np.ceil(H / self.window_size)) * self.window_size
978
- Wp = int(np.ceil(W / self.window_size)) * self.window_size
979
- img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
980
- h_slices = (slice(0, -self.window_size),
981
- slice(-self.window_size, -self.shift_size),
982
- slice(-self.shift_size, None))
983
- w_slices = (slice(0, -self.window_size),
984
- slice(-self.window_size, -self.shift_size),
985
- slice(-self.shift_size, None))
986
- cnt = 0
987
- for h in h_slices:
988
- for w in w_slices:
989
- img_mask[:, h, w, :] = cnt
990
- cnt += 1
991
-
992
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
993
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
994
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
995
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)).to(x.dtype)
996
-
997
- for blk in self.blocks:
998
- blk.H, blk.W = H, W
999
- if self.use_checkpoint:
1000
- x = checkpoint.checkpoint(blk, x, attn_mask)
1001
- else:
1002
- x = blk(x, attn_mask)
1003
- if self.downsample is not None:
1004
- x_down = self.downsample(x, H, W)
1005
- Wh, Ww = (H + 1) // 2, (W + 1) // 2
1006
- return x, H, W, x_down, Wh, Ww
1007
- else:
1008
- return x, H, W, x, H, W
1009
-
1010
-
1011
- class PatchEmbed(nn.Module):
1012
- """ Image to Patch Embedding
1013
-
1014
- Args:
1015
- patch_size (int): Patch token size. Default: 4.
1016
- in_channels (int): Number of input image channels. Default: 3.
1017
- embed_dim (int): Number of linear projection output channels. Default: 96.
1018
- norm_layer (nn.Module, optional): Normalization layer. Default: None
1019
- """
1020
-
1021
- def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
1022
- super().__init__()
1023
- patch_size = to_2tuple(patch_size)
1024
- self.patch_size = patch_size
1025
-
1026
- self.in_channels = in_channels
1027
- self.embed_dim = embed_dim
1028
-
1029
- self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
1030
- if norm_layer is not None:
1031
- self.norm = norm_layer(embed_dim)
1032
- else:
1033
- self.norm = None
1034
-
1035
- def forward(self, x):
1036
- """Forward function."""
1037
- # padding
1038
- _, _, H, W = x.size()
1039
- if W % self.patch_size[1] != 0:
1040
- x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
1041
- if H % self.patch_size[0] != 0:
1042
- x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
1043
-
1044
- x = self.proj(x) # B C Wh Ww
1045
- if self.norm is not None:
1046
- Wh, Ww = x.size(2), x.size(3)
1047
- x = x.flatten(2).transpose(1, 2)
1048
- x = self.norm(x)
1049
- x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
1050
-
1051
- return x
1052
-
1053
-
1054
- class SwinTransformer(nn.Module):
1055
- """ Swin Transformer backbone.
1056
- A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
1057
- https://arxiv.org/pdf/2103.14030
1058
-
1059
- Args:
1060
- pretrain_img_size (int): Input image size for training the pretrained model,
1061
- used in absolute postion embedding. Default 224.
1062
- patch_size (int | tuple(int)): Patch size. Default: 4.
1063
- in_channels (int): Number of input image channels. Default: 3.
1064
- embed_dim (int): Number of linear projection output channels. Default: 96.
1065
- depths (tuple[int]): Depths of each Swin Transformer stage.
1066
- num_heads (tuple[int]): Number of attention head of each stage.
1067
- window_size (int): Window size. Default: 7.
1068
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
1069
- qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
1070
- qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
1071
- drop_rate (float): Dropout rate.
1072
- attn_drop_rate (float): Attention dropout rate. Default: 0.
1073
- drop_path_rate (float): Stochastic depth rate. Default: 0.2.
1074
- norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
1075
- ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
1076
- patch_norm (bool): If True, add normalization after patch embedding. Default: True.
1077
- out_indices (Sequence[int]): Output from which stages.
1078
- frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
1079
- -1 means not freezing any parameters.
1080
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
1081
- """
1082
-
1083
- def __init__(self,
1084
- pretrain_img_size=224,
1085
- patch_size=4,
1086
- in_channels=3,
1087
- embed_dim=96,
1088
- depths=[2, 2, 6, 2],
1089
- num_heads=[3, 6, 12, 24],
1090
- window_size=7,
1091
- mlp_ratio=4.,
1092
- qkv_bias=True,
1093
- qk_scale=None,
1094
- drop_rate=0.,
1095
- attn_drop_rate=0.,
1096
- drop_path_rate=0.2,
1097
- norm_layer=nn.LayerNorm,
1098
- ape=False,
1099
- patch_norm=True,
1100
- out_indices=(0, 1, 2, 3),
1101
- frozen_stages=-1,
1102
- use_checkpoint=False):
1103
- super().__init__()
1104
-
1105
- self.pretrain_img_size = pretrain_img_size
1106
- self.num_layers = len(depths)
1107
- self.embed_dim = embed_dim
1108
- self.ape = ape
1109
- self.patch_norm = patch_norm
1110
- self.out_indices = out_indices
1111
- self.frozen_stages = frozen_stages
1112
-
1113
- # split image into non-overlapping patches
1114
- self.patch_embed = PatchEmbed(
1115
- patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
1116
- norm_layer=norm_layer if self.patch_norm else None)
1117
-
1118
- # absolute position embedding
1119
- if self.ape:
1120
- pretrain_img_size = to_2tuple(pretrain_img_size)
1121
- patch_size = to_2tuple(patch_size)
1122
- patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
1123
-
1124
- self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
1125
- trunc_normal_(self.absolute_pos_embed, std=.02)
1126
-
1127
- self.pos_drop = nn.Dropout(p=drop_rate)
1128
-
1129
- # stochastic depth
1130
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
1131
-
1132
- # build layers
1133
- self.layers = nn.ModuleList()
1134
- for i_layer in range(self.num_layers):
1135
- layer = BasicLayer(
1136
- dim=int(embed_dim * 2 ** i_layer),
1137
- depth=depths[i_layer],
1138
- num_heads=num_heads[i_layer],
1139
- window_size=window_size,
1140
- mlp_ratio=mlp_ratio,
1141
- qkv_bias=qkv_bias,
1142
- qk_scale=qk_scale,
1143
- drop=drop_rate,
1144
- attn_drop=attn_drop_rate,
1145
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
1146
- norm_layer=norm_layer,
1147
- downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
1148
- use_checkpoint=use_checkpoint)
1149
- self.layers.append(layer)
1150
-
1151
- num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
1152
- self.num_features = num_features
1153
-
1154
- # add a norm layer for each output
1155
- for i_layer in out_indices:
1156
- layer = norm_layer(num_features[i_layer])
1157
- layer_name = f'norm{i_layer}'
1158
- self.add_module(layer_name, layer)
1159
-
1160
- self._freeze_stages()
1161
-
1162
- def _freeze_stages(self):
1163
- if self.frozen_stages >= 0:
1164
- self.patch_embed.eval()
1165
- for param in self.patch_embed.parameters():
1166
- param.requires_grad = False
1167
-
1168
- if self.frozen_stages >= 1 and self.ape:
1169
- self.absolute_pos_embed.requires_grad = False
1170
-
1171
- if self.frozen_stages >= 2:
1172
- self.pos_drop.eval()
1173
- for i in range(0, self.frozen_stages - 1):
1174
- m = self.layers[i]
1175
- m.eval()
1176
- for param in m.parameters():
1177
- param.requires_grad = False
1178
-
1179
-
1180
- def forward(self, x):
1181
- """Forward function."""
1182
- x = self.patch_embed(x)
1183
-
1184
- Wh, Ww = x.size(2), x.size(3)
1185
- if self.ape:
1186
- # interpolate the position embedding to the corresponding size
1187
- absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
1188
- x = (x + absolute_pos_embed) # B Wh*Ww C
1189
-
1190
- outs = []#x.contiguous()]
1191
- x = x.flatten(2).transpose(1, 2)
1192
- x = self.pos_drop(x)
1193
- for i in range(self.num_layers):
1194
- layer = self.layers[i]
1195
- x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
1196
-
1197
- if i in self.out_indices:
1198
- norm_layer = getattr(self, f'norm{i}')
1199
- x_out = norm_layer(x_out)
1200
-
1201
- out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
1202
- outs.append(out)
1203
-
1204
- return tuple(outs)
1205
-
1206
- def train(self, mode=True):
1207
- """Convert the model into training mode while keep layers freezed."""
1208
- super(SwinTransformer, self).train(mode)
1209
- self._freeze_stages()
1210
-
1211
- def swin_v1_t():
1212
- model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
1213
- return model
1214
-
1215
- def swin_v1_s():
1216
- model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
1217
- return model
1218
-
1219
- def swin_v1_b():
1220
- model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
1221
- return model
1222
-
1223
- def swin_v1_l():
1224
- model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
1225
- return model
1226
-
1227
-
1228
-
1229
- ### models/modules/deform_conv.py
1230
-
1231
- import torch
1232
- import torch.nn as nn
1233
- from torchvision.ops import deform_conv2d
1234
-
1235
-
1236
- class DeformableConv2d(nn.Module):
1237
- def __init__(self,
1238
- in_channels,
1239
- out_channels,
1240
- kernel_size=3,
1241
- stride=1,
1242
- padding=1,
1243
- bias=False):
1244
-
1245
- super(DeformableConv2d, self).__init__()
1246
-
1247
- assert type(kernel_size) == tuple or type(kernel_size) == int
1248
-
1249
- kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
1250
- self.stride = stride if type(stride) == tuple else (stride, stride)
1251
- self.padding = padding
1252
-
1253
- self.offset_conv = nn.Conv2d(in_channels,
1254
- 2 * kernel_size[0] * kernel_size[1],
1255
- kernel_size=kernel_size,
1256
- stride=stride,
1257
- padding=self.padding,
1258
- bias=True)
1259
-
1260
- nn.init.constant_(self.offset_conv.weight, 0.)
1261
- nn.init.constant_(self.offset_conv.bias, 0.)
1262
-
1263
- self.modulator_conv = nn.Conv2d(in_channels,
1264
- 1 * kernel_size[0] * kernel_size[1],
1265
- kernel_size=kernel_size,
1266
- stride=stride,
1267
- padding=self.padding,
1268
- bias=True)
1269
-
1270
- nn.init.constant_(self.modulator_conv.weight, 0.)
1271
- nn.init.constant_(self.modulator_conv.bias, 0.)
1272
-
1273
- self.regular_conv = nn.Conv2d(in_channels,
1274
- out_channels=out_channels,
1275
- kernel_size=kernel_size,
1276
- stride=stride,
1277
- padding=self.padding,
1278
- bias=bias)
1279
-
1280
- def forward(self, x):
1281
- #h, w = x.shape[2:]
1282
- #max_offset = max(h, w)/4.
1283
-
1284
- offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
1285
- modulator = 2. * torch.sigmoid(self.modulator_conv(x))
1286
-
1287
- x = deform_conv2d(
1288
- input=x,
1289
- offset=offset,
1290
- weight=self.regular_conv.weight,
1291
- bias=self.regular_conv.bias,
1292
- padding=self.padding,
1293
- mask=modulator,
1294
- stride=self.stride,
1295
- )
1296
- return x
1297
-
1298
-
1299
-
1300
-
1301
- ### utils.py
1302
-
1303
- import torch.nn as nn
1304
-
1305
-
1306
- def build_act_layer(act_layer):
1307
- if act_layer == 'ReLU':
1308
- return nn.ReLU(inplace=True)
1309
- elif act_layer == 'SiLU':
1310
- return nn.SiLU(inplace=True)
1311
- elif act_layer == 'GELU':
1312
- return nn.GELU()
1313
-
1314
- raise NotImplementedError(f'build_act_layer does not support {act_layer}')
1315
-
1316
-
1317
- def build_norm_layer(dim,
1318
- norm_layer,
1319
- in_format='channels_last',
1320
- out_format='channels_last',
1321
- eps=1e-6):
1322
- layers = []
1323
- if norm_layer == 'BN':
1324
- if in_format == 'channels_last':
1325
- layers.append(to_channels_first())
1326
- layers.append(nn.BatchNorm2d(dim))
1327
- if out_format == 'channels_last':
1328
- layers.append(to_channels_last())
1329
- elif norm_layer == 'LN':
1330
- if in_format == 'channels_first':
1331
- layers.append(to_channels_last())
1332
- layers.append(nn.LayerNorm(dim, eps=eps))
1333
- if out_format == 'channels_first':
1334
- layers.append(to_channels_first())
1335
- else:
1336
- raise NotImplementedError(
1337
- f'build_norm_layer does not support {norm_layer}')
1338
- return nn.Sequential(*layers)
1339
-
1340
-
1341
- class to_channels_first(nn.Module):
1342
-
1343
- def __init__(self):
1344
- super().__init__()
1345
-
1346
- def forward(self, x):
1347
- return x.permute(0, 3, 1, 2)
1348
-
1349
-
1350
- class to_channels_last(nn.Module):
1351
-
1352
- def __init__(self):
1353
- super().__init__()
1354
-
1355
- def forward(self, x):
1356
- return x.permute(0, 2, 3, 1)
1357
-
1358
-
1359
-
1360
- ### dataset.py
1361
-
1362
- _class_labels_TR_sorted = (
1363
- 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, '
1364
- 'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, '
1365
- 'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
1366
- 'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, '
1367
- 'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, '
1368
- 'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, '
1369
- 'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, '
1370
- 'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, '
1371
- 'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, '
1372
- 'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, '
1373
- 'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, '
1374
- 'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, '
1375
- 'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, '
1376
- 'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
1377
- )
1378
- class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
1379
-
1380
-
1381
- ### models/backbones/build_backbones.py
1382
-
1383
- import torch
1384
- import torch.nn as nn
1385
- from collections import OrderedDict
1386
- from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
1387
- # from models.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
1388
- # from models.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
1389
- # from config import Config
1390
-
1391
-
1392
- config = Config()
1393
-
1394
- def build_backbone(bb_name, pretrained=True, params_settings=''):
1395
- if bb_name == 'vgg16':
1396
- bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
1397
- bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
1398
- elif bb_name == 'vgg16bn':
1399
- bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
1400
- bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
1401
- elif bb_name == 'resnet50':
1402
- bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
1403
- bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
1404
- else:
1405
- bb = eval('{}({})'.format(bb_name, params_settings))
1406
- if pretrained:
1407
- bb = load_weights(bb, bb_name)
1408
- return bb
1409
-
1410
- def load_weights(model, model_name):
1411
- save_model = torch.load(config.weights[model_name], map_location='cpu')
1412
- model_dict = model.state_dict()
1413
- state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
1414
- # to ignore the weights with mismatched size when I modify the backbone itself.
1415
- if not state_dict:
1416
- save_model_keys = list(save_model.keys())
1417
- sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
1418
- state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
1419
- if not state_dict or not sub_item:
1420
- print('Weights are not successully loaded. Check the state dict of weights file.')
1421
- return None
1422
- else:
1423
- print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
1424
- model_dict.update(state_dict)
1425
- model.load_state_dict(model_dict)
1426
- return model
1427
-
1428
-
1429
-
1430
- ### models/modules/decoder_blocks.py
1431
-
1432
- import torch
1433
- import torch.nn as nn
1434
- # from models.aspp import ASPP, ASPPDeformable
1435
- # from config import Config
1436
-
1437
-
1438
- # config = Config()
1439
-
1440
-
1441
- class BasicDecBlk(nn.Module):
1442
- def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
1443
- super(BasicDecBlk, self).__init__()
1444
- inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1445
- self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
1446
- self.relu_in = nn.ReLU(inplace=True)
1447
- if config.dec_att == 'ASPP':
1448
- self.dec_att = ASPP(in_channels=inter_channels)
1449
- elif config.dec_att == 'ASPPDeformable':
1450
- self.dec_att = ASPPDeformable(in_channels=inter_channels)
1451
- self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
1452
- self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
1453
- self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1454
-
1455
- def forward(self, x):
1456
- x = self.conv_in(x)
1457
- x = self.bn_in(x)
1458
- x = self.relu_in(x)
1459
- if hasattr(self, 'dec_att'):
1460
- x = self.dec_att(x)
1461
- x = self.conv_out(x)
1462
- x = self.bn_out(x)
1463
- return x
1464
-
1465
-
1466
- class ResBlk(nn.Module):
1467
- def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
1468
- super(ResBlk, self).__init__()
1469
- if out_channels is None:
1470
- out_channels = in_channels
1471
- inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1472
-
1473
- self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
1474
- self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
1475
- self.relu_in = nn.ReLU(inplace=True)
1476
-
1477
- if config.dec_att == 'ASPP':
1478
- self.dec_att = ASPP(in_channels=inter_channels)
1479
- elif config.dec_att == 'ASPPDeformable':
1480
- self.dec_att = ASPPDeformable(in_channels=inter_channels)
1481
-
1482
- self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
1483
- self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1484
-
1485
- self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
1486
-
1487
- def forward(self, x):
1488
- _x = self.conv_resi(x)
1489
- x = self.conv_in(x)
1490
- x = self.bn_in(x)
1491
- x = self.relu_in(x)
1492
- if hasattr(self, 'dec_att'):
1493
- x = self.dec_att(x)
1494
- x = self.conv_out(x)
1495
- x = self.bn_out(x)
1496
- return x + _x
1497
-
1498
-
1499
-
1500
- ### models/modules/lateral_blocks.py
1501
-
1502
- import numpy as np
1503
- import torch
1504
- import torch.nn as nn
1505
- import torch.nn.functional as F
1506
- from functools import partial
1507
-
1508
- # from config import Config
1509
-
1510
-
1511
- # config = Config()
1512
-
1513
-
1514
- class BasicLatBlk(nn.Module):
1515
- def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
1516
- super(BasicLatBlk, self).__init__()
1517
- inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
1518
- self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
1519
-
1520
- def forward(self, x):
1521
- x = self.conv(x)
1522
- return x
1523
-
1524
-
1525
-
1526
- ### models/modules/aspp.py
1527
-
1528
- import torch
1529
- import torch.nn as nn
1530
- import torch.nn.functional as F
1531
- # from models.deform_conv import DeformableConv2d
1532
- # from config import Config
1533
-
1534
-
1535
- # config = Config()
1536
-
1537
-
1538
- class _ASPPModule(nn.Module):
1539
- def __init__(self, in_channels, planes, kernel_size, padding, dilation):
1540
- super(_ASPPModule, self).__init__()
1541
- self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
1542
- stride=1, padding=padding, dilation=dilation, bias=False)
1543
- self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
1544
- self.relu = nn.ReLU(inplace=True)
1545
-
1546
- def forward(self, x):
1547
- x = self.atrous_conv(x)
1548
- x = self.bn(x)
1549
-
1550
- return self.relu(x)
1551
-
1552
-
1553
- class ASPP(nn.Module):
1554
- def __init__(self, in_channels=64, out_channels=None, output_stride=16):
1555
- super(ASPP, self).__init__()
1556
- self.down_scale = 1
1557
- if out_channels is None:
1558
- out_channels = in_channels
1559
- self.in_channelster = 256 // self.down_scale
1560
- if output_stride == 16:
1561
- dilations = [1, 6, 12, 18]
1562
- elif output_stride == 8:
1563
- dilations = [1, 12, 24, 36]
1564
- else:
1565
- raise NotImplementedError
1566
-
1567
- self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
1568
- self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
1569
- self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
1570
- self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
1571
-
1572
- self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
1573
- nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
1574
- nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
1575
- nn.ReLU(inplace=True))
1576
- self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
1577
- self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1578
- self.relu = nn.ReLU(inplace=True)
1579
- self.dropout = nn.Dropout(0.5)
1580
-
1581
- def forward(self, x):
1582
- x1 = self.aspp1(x)
1583
- x2 = self.aspp2(x)
1584
- x3 = self.aspp3(x)
1585
- x4 = self.aspp4(x)
1586
- x5 = self.global_avg_pool(x)
1587
- x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
1588
- x = torch.cat((x1, x2, x3, x4, x5), dim=1)
1589
-
1590
- x = self.conv1(x)
1591
- x = self.bn1(x)
1592
- x = self.relu(x)
1593
-
1594
- return self.dropout(x)
1595
-
1596
-
1597
- ##################### Deformable
1598
- class _ASPPModuleDeformable(nn.Module):
1599
- def __init__(self, in_channels, planes, kernel_size, padding):
1600
- super(_ASPPModuleDeformable, self).__init__()
1601
- self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
1602
- stride=1, padding=padding, bias=False)
1603
- self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
1604
- self.relu = nn.ReLU(inplace=True)
1605
-
1606
- def forward(self, x):
1607
- x = self.atrous_conv(x)
1608
- x = self.bn(x)
1609
-
1610
- return self.relu(x)
1611
-
1612
-
1613
- class ASPPDeformable(nn.Module):
1614
- def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
1615
- super(ASPPDeformable, self).__init__()
1616
- self.down_scale = 1
1617
- if out_channels is None:
1618
- out_channels = in_channels
1619
- self.in_channelster = 256 // self.down_scale
1620
-
1621
- self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
1622
- self.aspp_deforms = nn.ModuleList([
1623
- _ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
1624
- ])
1625
-
1626
- self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
1627
- nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
1628
- nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
1629
- nn.ReLU(inplace=True))
1630
- self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
1631
- self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
1632
- self.relu = nn.ReLU(inplace=True)
1633
- self.dropout = nn.Dropout(0.5)
1634
-
1635
- def forward(self, x):
1636
- x1 = self.aspp1(x)
1637
- x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
1638
- x5 = self.global_avg_pool(x)
1639
- x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
1640
- x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
1641
-
1642
- x = self.conv1(x)
1643
- x = self.bn1(x)
1644
- x = self.relu(x)
1645
-
1646
- return self.dropout(x)
1647
-
1648
-
1649
-
1650
- ### models/refinement/refiner.py
1651
-
1652
- import torch
1653
- import torch.nn as nn
1654
- from collections import OrderedDict
1655
- import torch
1656
- import torch.nn as nn
1657
- import torch.nn.functional as F
1658
- from torchvision.models import vgg16, vgg16_bn
1659
- from torchvision.models import resnet50
1660
-
1661
- # from config import Config
1662
- # from dataset import class_labels_TR_sorted
1663
- # from models.build_backbone import build_backbone
1664
- # from models.decoder_blocks import BasicDecBlk
1665
- # from models.lateral_blocks import BasicLatBlk
1666
- # from models.ing import *
1667
- # from models.stem_layer import StemLayer
1668
-
1669
-
1670
- class RefinerPVTInChannels4(nn.Module):
1671
- def __init__(self, in_channels=3+1):
1672
- super(RefinerPVTInChannels4, self).__init__()
1673
- self.config = Config()
1674
- self.epoch = 1
1675
- self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
1676
-
1677
- lateral_channels_in_collection = {
1678
- 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
1679
- 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
1680
- 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
1681
- }
1682
- channels = lateral_channels_in_collection[self.config.bb]
1683
- self.squeeze_module = BasicDecBlk(channels[0], channels[0])
1684
-
1685
- self.decoder = Decoder(channels)
1686
-
1687
- if 0:
1688
- for key, value in self.named_parameters():
1689
- if 'bb.' in key:
1690
- value.requires_grad = False
1691
-
1692
- def forward(self, x):
1693
- if isinstance(x, list):
1694
- x = torch.cat(x, dim=1)
1695
- ########## Encoder ##########
1696
- if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
1697
- x1 = self.bb.conv1(x)
1698
- x2 = self.bb.conv2(x1)
1699
- x3 = self.bb.conv3(x2)
1700
- x4 = self.bb.conv4(x3)
1701
- else:
1702
- x1, x2, x3, x4 = self.bb(x)
1703
-
1704
- x4 = self.squeeze_module(x4)
1705
-
1706
- ########## Decoder ##########
1707
-
1708
- features = [x, x1, x2, x3, x4]
1709
- scaled_preds = self.decoder(features)
1710
-
1711
- return scaled_preds
1712
-
1713
-
1714
- class Refiner(nn.Module):
1715
- def __init__(self, in_channels=3+1):
1716
- super(Refiner, self).__init__()
1717
- self.config = Config()
1718
- self.epoch = 1
1719
- self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
1720
- self.bb = build_backbone(self.config.bb)
1721
-
1722
- lateral_channels_in_collection = {
1723
- 'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
1724
- 'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
1725
- 'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
1726
- }
1727
- channels = lateral_channels_in_collection[self.config.bb]
1728
- self.squeeze_module = BasicDecBlk(channels[0], channels[0])
1729
-
1730
- self.decoder = Decoder(channels)
1731
-
1732
- if 0:
1733
- for key, value in self.named_parameters():
1734
- if 'bb.' in key:
1735
- value.requires_grad = False
1736
-
1737
- def forward(self, x):
1738
- if isinstance(x, list):
1739
- x = torch.cat(x, dim=1)
1740
- x = self.stem_layer(x)
1741
- ########## Encoder ##########
1742
- if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
1743
- x1 = self.bb.conv1(x)
1744
- x2 = self.bb.conv2(x1)
1745
- x3 = self.bb.conv3(x2)
1746
- x4 = self.bb.conv4(x3)
1747
- else:
1748
- x1, x2, x3, x4 = self.bb(x)
1749
-
1750
- x4 = self.squeeze_module(x4)
1751
-
1752
- ########## Decoder ##########
1753
-
1754
- features = [x, x1, x2, x3, x4]
1755
- scaled_preds = self.decoder(features)
1756
-
1757
- return scaled_preds
1758
-
1759
-
1760
- class Decoder(nn.Module):
1761
- def __init__(self, channels):
1762
- super(Decoder, self).__init__()
1763
- self.config = Config()
1764
- DecoderBlock = eval('BasicDecBlk')
1765
- LateralBlock = eval('BasicLatBlk')
1766
-
1767
- self.decoder_block4 = DecoderBlock(channels[0], channels[1])
1768
- self.decoder_block3 = DecoderBlock(channels[1], channels[2])
1769
- self.decoder_block2 = DecoderBlock(channels[2], channels[3])
1770
- self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
1771
-
1772
- self.lateral_block4 = LateralBlock(channels[1], channels[1])
1773
- self.lateral_block3 = LateralBlock(channels[2], channels[2])
1774
- self.lateral_block2 = LateralBlock(channels[3], channels[3])
1775
-
1776
- if self.config.ms_supervision:
1777
- self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
1778
- self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
1779
- self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
1780
- self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
1781
-
1782
- def forward(self, features):
1783
- x, x1, x2, x3, x4 = features
1784
- outs = []
1785
- p4 = self.decoder_block4(x4)
1786
- _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
1787
- _p3 = _p4 + self.lateral_block4(x3)
1788
-
1789
- p3 = self.decoder_block3(_p3)
1790
- _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
1791
- _p2 = _p3 + self.lateral_block3(x2)
1792
-
1793
- p2 = self.decoder_block2(_p2)
1794
- _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
1795
- _p1 = _p2 + self.lateral_block2(x1)
1796
-
1797
- _p1 = self.decoder_block1(_p1)
1798
- _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
1799
- p1_out = self.conv_out1(_p1)
1800
-
1801
- if self.config.ms_supervision:
1802
- outs.append(self.conv_ms_spvn_4(p4))
1803
- outs.append(self.conv_ms_spvn_3(p3))
1804
- outs.append(self.conv_ms_spvn_2(p2))
1805
- outs.append(p1_out)
1806
- return outs
1807
-
1808
-
1809
- class RefUNet(nn.Module):
1810
- # Refinement
1811
- def __init__(self, in_channels=3+1):
1812
- super(RefUNet, self).__init__()
1813
- self.encoder_1 = nn.Sequential(
1814
- nn.Conv2d(in_channels, 64, 3, 1, 1),
1815
- nn.Conv2d(64, 64, 3, 1, 1),
1816
- nn.BatchNorm2d(64),
1817
- nn.ReLU(inplace=True)
1818
- )
1819
-
1820
- self.encoder_2 = nn.Sequential(
1821
- nn.MaxPool2d(2, 2, ceil_mode=True),
1822
- nn.Conv2d(64, 64, 3, 1, 1),
1823
- nn.BatchNorm2d(64),
1824
- nn.ReLU(inplace=True)
1825
- )
1826
-
1827
- self.encoder_3 = nn.Sequential(
1828
- nn.MaxPool2d(2, 2, ceil_mode=True),
1829
- nn.Conv2d(64, 64, 3, 1, 1),
1830
- nn.BatchNorm2d(64),
1831
- nn.ReLU(inplace=True)
1832
- )
1833
-
1834
- self.encoder_4 = nn.Sequential(
1835
- nn.MaxPool2d(2, 2, ceil_mode=True),
1836
- nn.Conv2d(64, 64, 3, 1, 1),
1837
- nn.BatchNorm2d(64),
1838
- nn.ReLU(inplace=True)
1839
- )
1840
-
1841
- self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
1842
- #####
1843
- self.decoder_5 = nn.Sequential(
1844
- nn.Conv2d(64, 64, 3, 1, 1),
1845
- nn.BatchNorm2d(64),
1846
- nn.ReLU(inplace=True)
1847
- )
1848
- #####
1849
- self.decoder_4 = nn.Sequential(
1850
- nn.Conv2d(128, 64, 3, 1, 1),
1851
- nn.BatchNorm2d(64),
1852
- nn.ReLU(inplace=True)
1853
- )
1854
-
1855
- self.decoder_3 = nn.Sequential(
1856
- nn.Conv2d(128, 64, 3, 1, 1),
1857
- nn.BatchNorm2d(64),
1858
- nn.ReLU(inplace=True)
1859
- )
1860
-
1861
- self.decoder_2 = nn.Sequential(
1862
- nn.Conv2d(128, 64, 3, 1, 1),
1863
- nn.BatchNorm2d(64),
1864
- nn.ReLU(inplace=True)
1865
- )
1866
-
1867
- self.decoder_1 = nn.Sequential(
1868
- nn.Conv2d(128, 64, 3, 1, 1),
1869
- nn.BatchNorm2d(64),
1870
- nn.ReLU(inplace=True)
1871
- )
1872
-
1873
- self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
1874
-
1875
- self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
1876
-
1877
- def forward(self, x):
1878
- outs = []
1879
- if isinstance(x, list):
1880
- x = torch.cat(x, dim=1)
1881
- hx = x
1882
-
1883
- hx1 = self.encoder_1(hx)
1884
- hx2 = self.encoder_2(hx1)
1885
- hx3 = self.encoder_3(hx2)
1886
- hx4 = self.encoder_4(hx3)
1887
-
1888
- hx = self.decoder_5(self.pool4(hx4))
1889
- hx = torch.cat((self.upscore2(hx), hx4), 1)
1890
-
1891
- d4 = self.decoder_4(hx)
1892
- hx = torch.cat((self.upscore2(d4), hx3), 1)
1893
-
1894
- d3 = self.decoder_3(hx)
1895
- hx = torch.cat((self.upscore2(d3), hx2), 1)
1896
-
1897
- d2 = self.decoder_2(hx)
1898
- hx = torch.cat((self.upscore2(d2), hx1), 1)
1899
-
1900
- d1 = self.decoder_1(hx)
1901
-
1902
- x = self.conv_d0(d1)
1903
- outs.append(x)
1904
- return outs
1905
-
1906
-
1907
-
1908
- ### models/stem_layer.py
1909
-
1910
- import torch.nn as nn
1911
- # from utils import build_act_layer, build_norm_layer
1912
-
1913
-
1914
- class StemLayer(nn.Module):
1915
- r""" Stem layer of InternImage
1916
- Args:
1917
- in_channels (int): number of input channels
1918
- out_channels (int): number of output channels
1919
- act_layer (str): activation layer
1920
- norm_layer (str): normalization layer
1921
- """
1922
-
1923
- def __init__(self,
1924
- in_channels=3+1,
1925
- inter_channels=48,
1926
- out_channels=96,
1927
- act_layer='GELU',
1928
- norm_layer='BN'):
1929
- super().__init__()
1930
- self.conv1 = nn.Conv2d(in_channels,
1931
- inter_channels,
1932
- kernel_size=3,
1933
- stride=1,
1934
- padding=1)
1935
- self.norm1 = build_norm_layer(
1936
- inter_channels, norm_layer, 'channels_first', 'channels_first'
1937
- )
1938
- self.act = build_act_layer(act_layer)
1939
- self.conv2 = nn.Conv2d(inter_channels,
1940
- out_channels,
1941
- kernel_size=3,
1942
- stride=1,
1943
- padding=1)
1944
- self.norm2 = build_norm_layer(
1945
- out_channels, norm_layer, 'channels_first', 'channels_first'
1946
- )
1947
-
1948
- def forward(self, x):
1949
- x = self.conv1(x)
1950
- x = self.norm1(x)
1951
- x = self.act(x)
1952
- x = self.conv2(x)
1953
- x = self.norm2(x)
1954
- return x
1955
-
1956
-
1957
- ### models/birefnet.py
1958
-
1959
- import torch
1960
- import torch.nn as nn
1961
- import torch.nn.functional as F
1962
- from kornia.filters import laplacian
1963
- from transformers import PreTrainedModel
1964
-
1965
- # from config import Config
1966
- # from dataset import class_labels_TR_sorted
1967
- # from models.build_backbone import build_backbone
1968
- # from models.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
1969
- # from models.lateral_blocks import BasicLatBlk
1970
- # from models.aspp import ASPP, ASPPDeformable
1971
- # from models.ing import *
1972
- # from models.refiner import Refiner, RefinerPVTInChannels4, RefUNet
1973
- # from models.stem_layer import StemLayer
1974
- from .BiRefNet_config import BiRefNetConfig
1975
-
1976
-
1977
- class BiRefNet(
1978
- PreTrainedModel
1979
- ):
1980
- config_class = BiRefNetConfig
1981
- def __init__(self, bb_pretrained=True, config=BiRefNetConfig()):
1982
- super(BiRefNet, self).__init__(config)
1983
- bb_pretrained = config.bb_pretrained
1984
- self.config = Config()
1985
- self.epoch = 1
1986
- self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
1987
-
1988
- channels = self.config.lateral_channels_in_collection
1989
-
1990
- if self.config.auxiliary_classification:
1991
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
1992
- self.cls_head = nn.Sequential(
1993
- nn.Linear(channels[0], len(class_labels_TR_sorted))
1994
- )
1995
-
1996
- if self.config.squeeze_block:
1997
- self.squeeze_module = nn.Sequential(*[
1998
- eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
1999
- for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
2000
- ])
2001
-
2002
- self.decoder = Decoder(channels)
2003
-
2004
- if self.config.ender:
2005
- self.dec_end = nn.Sequential(
2006
- nn.Conv2d(1, 16, 3, 1, 1),
2007
- nn.Conv2d(16, 1, 3, 1, 1),
2008
- nn.ReLU(inplace=True),
2009
- )
2010
-
2011
- # refine patch-level segmentation
2012
- if self.config.refine:
2013
- if self.config.refine == 'itself':
2014
- self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
2015
- else:
2016
- self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
2017
-
2018
- if self.config.freeze_bb:
2019
- # Freeze the backbone...
2020
- print(self.named_parameters())
2021
- for key, value in self.named_parameters():
2022
- if 'bb.' in key and 'refiner.' not in key:
2023
- value.requires_grad = False
2024
-
2025
- def forward_enc(self, x):
2026
- if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
2027
- x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
2028
- else:
2029
- x1, x2, x3, x4 = self.bb(x)
2030
- if self.config.mul_scl_ipt == 'cat':
2031
- B, C, H, W = x.shape
2032
- x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
2033
- x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2034
- x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2035
- x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2036
- x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
2037
- elif self.config.mul_scl_ipt == 'add':
2038
- B, C, H, W = x.shape
2039
- x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
2040
- x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
2041
- x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
2042
- x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
2043
- x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
2044
- class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
2045
- if self.config.cxt:
2046
- x4 = torch.cat(
2047
- (
2048
- *[
2049
- F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
2050
- F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
2051
- F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
2052
- ][-len(self.config.cxt):],
2053
- x4
2054
- ),
2055
- dim=1
2056
- )
2057
- return (x1, x2, x3, x4), class_preds
2058
-
2059
- def forward_ori(self, x):
2060
- ########## Encoder ##########
2061
- (x1, x2, x3, x4), class_preds = self.forward_enc(x)
2062
- if self.config.squeeze_block:
2063
- x4 = self.squeeze_module(x4)
2064
- ########## Decoder ##########
2065
- features = [x, x1, x2, x3, x4]
2066
- if self.training and self.config.out_ref:
2067
- features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
2068
- scaled_preds = self.decoder(features)
2069
- return scaled_preds, class_preds
2070
-
2071
- def forward(self, x):
2072
- scaled_preds, class_preds = self.forward_ori(x)
2073
- class_preds_lst = [class_preds]
2074
- return [scaled_preds, class_preds_lst] if self.training else scaled_preds
2075
-
2076
-
2077
- class Decoder(nn.Module):
2078
- def __init__(self, channels):
2079
- super(Decoder, self).__init__()
2080
- self.config = Config()
2081
- DecoderBlock = eval(self.config.dec_blk)
2082
- LateralBlock = eval(self.config.lat_blk)
2083
-
2084
- if self.config.dec_ipt:
2085
- self.split = self.config.dec_ipt_split
2086
- N_dec_ipt = 64
2087
- DBlock = SimpleConvs
2088
- ic = 64
2089
- ipt_cha_opt = 1
2090
- self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
2091
- self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
2092
- self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
2093
- self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
2094
- self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
2095
- else:
2096
- self.split = None
2097
-
2098
- self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
2099
- self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
2100
- self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
2101
- self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
2102
- self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
2103
-
2104
- self.lateral_block4 = LateralBlock(channels[1], channels[1])
2105
- self.lateral_block3 = LateralBlock(channels[2], channels[2])
2106
- self.lateral_block2 = LateralBlock(channels[3], channels[3])
2107
-
2108
- if self.config.ms_supervision:
2109
- self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
2110
- self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
2111
- self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
2112
-
2113
- if self.config.out_ref:
2114
- _N = 16
2115
- self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2116
- self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2117
- self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
2118
-
2119
- self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2120
- self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2121
- self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2122
-
2123
- self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2124
- self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2125
- self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
2126
-
2127
- def get_patches_batch(self, x, p):
2128
- _size_h, _size_w = p.shape[2:]
2129
- patches_batch = []
2130
- for idx in range(x.shape[0]):
2131
- columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
2132
- patches_x = []
2133
- for column_x in columns_x:
2134
- patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
2135
- patch_sample = torch.cat(patches_x, dim=1)
2136
- patches_batch.append(patch_sample)
2137
- return torch.cat(patches_batch, dim=0)
2138
-
2139
- def forward(self, features):
2140
- if self.training and self.config.out_ref:
2141
- outs_gdt_pred = []
2142
- outs_gdt_label = []
2143
- x, x1, x2, x3, x4, gdt_gt = features
2144
- else:
2145
- x, x1, x2, x3, x4 = features
2146
- outs = []
2147
-
2148
- if self.config.dec_ipt:
2149
- patches_batch = self.get_patches_batch(x, x4) if self.split else x
2150
- x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
2151
- p4 = self.decoder_block4(x4)
2152
- m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
2153
- if self.config.out_ref:
2154
- p4_gdt = self.gdt_convs_4(p4)
2155
- if self.training:
2156
- # >> GT:
2157
- m4_dia = m4
2158
- gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2159
- outs_gdt_label.append(gdt_label_main_4)
2160
- # >> Pred:
2161
- gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
2162
- outs_gdt_pred.append(gdt_pred_4)
2163
- gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
2164
- # >> Finally:
2165
- p4 = p4 * gdt_attn_4
2166
- _p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
2167
- _p3 = _p4 + self.lateral_block4(x3)
2168
-
2169
- if self.config.dec_ipt:
2170
- patches_batch = self.get_patches_batch(x, _p3) if self.split else x
2171
- _p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
2172
- p3 = self.decoder_block3(_p3)
2173
- m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
2174
- if self.config.out_ref:
2175
- p3_gdt = self.gdt_convs_3(p3)
2176
- if self.training:
2177
- # >> GT:
2178
- # m3 --dilation--> m3_dia
2179
- # G_3^gt * m3_dia --> G_3^m, which is the label of gradient
2180
- m3_dia = m3
2181
- gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2182
- outs_gdt_label.append(gdt_label_main_3)
2183
- # >> Pred:
2184
- # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
2185
- # F_3^G --sigmoid--> A_3^G
2186
- gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
2187
- outs_gdt_pred.append(gdt_pred_3)
2188
- gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
2189
- # >> Finally:
2190
- # p3 = p3 * A_3^G
2191
- p3 = p3 * gdt_attn_3
2192
- _p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
2193
- _p2 = _p3 + self.lateral_block3(x2)
2194
-
2195
- if self.config.dec_ipt:
2196
- patches_batch = self.get_patches_batch(x, _p2) if self.split else x
2197
- _p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
2198
- p2 = self.decoder_block2(_p2)
2199
- m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
2200
- if self.config.out_ref:
2201
- p2_gdt = self.gdt_convs_2(p2)
2202
- if self.training:
2203
- # >> GT:
2204
- m2_dia = m2
2205
- gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
2206
- outs_gdt_label.append(gdt_label_main_2)
2207
- # >> Pred:
2208
- gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
2209
- outs_gdt_pred.append(gdt_pred_2)
2210
- gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
2211
- # >> Finally:
2212
- p2 = p2 * gdt_attn_2
2213
- _p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
2214
- _p1 = _p2 + self.lateral_block2(x1)
2215
-
2216
- if self.config.dec_ipt:
2217
- patches_batch = self.get_patches_batch(x, _p1) if self.split else x
2218
- _p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
2219
- _p1 = self.decoder_block1(_p1)
2220
- _p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
2221
-
2222
- if self.config.dec_ipt:
2223
- patches_batch = self.get_patches_batch(x, _p1) if self.split else x
2224
- _p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
2225
- p1_out = self.conv_out1(_p1)
2226
-
2227
- if self.config.ms_supervision:
2228
- outs.append(m4)
2229
- outs.append(m3)
2230
- outs.append(m2)
2231
- outs.append(p1_out)
2232
- return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
2233
-
2234
-
2235
- class SimpleConvs(nn.Module):
2236
- def __init__(
2237
- self, in_channels: int, out_channels: int, inter_channels=64
2238
- ) -> None:
2239
- super().__init__()
2240
- self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
2241
- self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
2242
-
2243
- def forward(self, x):
2244
- return self.conv_out(self.conv1(x))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
original/config.json DELETED
@@ -1,20 +0,0 @@
1
- {
2
- "_name_or_path": "ZhengPeng7/BiRefNet",
3
- "architectures": [
4
- "BiRefNet"
5
- ],
6
- "auto_map": {
7
- "AutoConfig": "BiRefNet_config.BiRefNetConfig",
8
- "AutoModelForImageSegmentation": "birefnet.BiRefNet"
9
- },
10
- "custom_pipelines": {
11
- "image-segmentation": {
12
- "pt": [
13
- "AutoModelForImageSegmentation"
14
- ],
15
- "tf": [],
16
- "type": "image"
17
- }
18
- },
19
- "bb_pretrained": false
20
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
original/gitattributes DELETED
@@ -1,35 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ckpt filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
- *.model filter=lfs diff=lfs merge=lfs -text
13
- *.msgpack filter=lfs diff=lfs merge=lfs -text
14
- *.npy filter=lfs diff=lfs merge=lfs -text
15
- *.npz filter=lfs diff=lfs merge=lfs -text
16
- *.onnx filter=lfs diff=lfs merge=lfs -text
17
- *.ot filter=lfs diff=lfs merge=lfs -text
18
- *.parquet filter=lfs diff=lfs merge=lfs -text
19
- *.pb filter=lfs diff=lfs merge=lfs -text
20
- *.pickle filter=lfs diff=lfs merge=lfs -text
21
- *.pkl filter=lfs diff=lfs merge=lfs -text
22
- *.pt filter=lfs diff=lfs merge=lfs -text
23
- *.pth filter=lfs diff=lfs merge=lfs -text
24
- *.rar filter=lfs diff=lfs merge=lfs -text
25
- *.safetensors filter=lfs diff=lfs merge=lfs -text
26
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
- *.tar.* filter=lfs diff=lfs merge=lfs -text
28
- *.tar filter=lfs diff=lfs merge=lfs -text
29
- *.tflite filter=lfs diff=lfs merge=lfs -text
30
- *.tgz filter=lfs diff=lfs merge=lfs -text
31
- *.wasm filter=lfs diff=lfs merge=lfs -text
32
- *.xz filter=lfs diff=lfs merge=lfs -text
33
- *.zip filter=lfs diff=lfs merge=lfs -text
34
- *.zst filter=lfs diff=lfs merge=lfs -text
35
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
original/gitignore DELETED
@@ -1,142 +0,0 @@
1
- # Custom
2
- e_*
3
- .vscode
4
- ckpt
5
- preds
6
- evaluation/eval-*
7
- nohup.out*
8
- tmp*
9
- *.pth
10
- core-*-python-*
11
- .DS_Store
12
- __MACOSX/
13
-
14
- # Byte-compiled / optimized / DLL files
15
- __pycache__/
16
- *.py[cod]
17
- *$py.class
18
-
19
- # C extensions
20
- *.so
21
-
22
- # Distribution / packaging
23
- .Python
24
- build/
25
- develop-eggs/
26
- dist/
27
- downloads/
28
- eggs/
29
- .eggs/
30
- lib/
31
- lib64/
32
- parts/
33
- sdist/
34
- var/
35
- wheels/
36
- pip-wheel-metadata/
37
- share/python-wheels/
38
- *.egg-info/
39
- .installed.cfg
40
- *.egg
41
- MANIFEST
42
-
43
- # PyInstaller
44
- # Usually these files are written by a python script from a template
45
- # before PyInstaller builds the exe, so as to inject date/other infos into it.
46
- *.manifest
47
- *.spec
48
-
49
- # Installer logs
50
- pip-log.txt
51
- pip-delete-this-directory.txt
52
-
53
- # Unit test / coverage reports
54
- htmlcov/
55
- .tox/
56
- .nox/
57
- .coverage
58
- .coverage.*
59
- .cache
60
- nosetests.xml
61
- coverage.xml
62
- *.cover
63
- *.py,cover
64
- .hypothesis/
65
- .pytest_cache/
66
-
67
- # Translations
68
- *.mo
69
- *.pot
70
-
71
- # Django stuff:
72
- *.log
73
- local_settings.py
74
- db.sqlite3
75
- db.sqlite3-journal
76
-
77
- # Flask stuff:
78
- instance/
79
- .webassets-cache
80
-
81
- # Scrapy stuff:
82
- .scrapy
83
-
84
- # Sphinx documentation
85
- docs/_build/
86
-
87
- # PyBuilder
88
- target/
89
-
90
- # Jupyter Notebook
91
- .ipynb_checkpoints
92
-
93
- # IPython
94
- profile_default/
95
- ipython_config.py
96
-
97
- # pyenv
98
- .python-version
99
-
100
- # pipenv
101
- # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
102
- # However, in case of collaboration, if having platform-specific dependencies or dependencies
103
- # having no cross-platform support, pipenv may install dependencies that don't work, or not
104
- # install all needed dependencies.
105
- #Pipfile.lock
106
-
107
- # PEP 582; used by e.g. github.com/David-OConnor/pyflow
108
- __pypackages__/
109
-
110
- # Celery stuff
111
- celerybeat-schedule
112
- celerybeat.pid
113
-
114
- # SageMath parsed files
115
- *.sage.py
116
-
117
- # Environments
118
- .env
119
- .venv
120
- env/
121
- venv/
122
- ENV/
123
- env.bak/
124
- venv.bak/
125
-
126
- # Spyder project settings
127
- .spyderproject
128
- .spyproject
129
-
130
- # Rope project settings
131
- .ropeproject
132
-
133
- # mkdocs documentation
134
- /site
135
-
136
- # mypy
137
- .mypy_cache/
138
- .dmypy.json
139
- dmypy.json
140
-
141
- # Pyre type checker
142
- .pyre/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
original/model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:77277264c0e8c74149d3ff2fade4fd8176965b7108f3c5fc3b8c9c811edb4519
3
- size 884878856