File size: 1,921 Bytes
7971b9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: muril-base-cased-finetuned-code-mixed-DS
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# muril-base-cased-finetuned-code-mixed-DS

This model is a fine-tuned version of [google/muril-base-cased](https://huggingface.co./google/muril-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0780
- Accuracy: 0.5030
- Precision: 0.3506
- Recall: 0.4661
- F1: 0.3695

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 43
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.0982        | 1.98  | 248  | 1.0974          | 0.1952   | 0.3968    | 0.3371 | 0.1140 |
| 1.0951        | 3.97  | 496  | 1.0909          | 0.4366   | 0.3352    | 0.4386 | 0.3319 |
| 1.0877        | 5.95  | 744  | 1.0837          | 0.4950   | 0.3491    | 0.4680 | 0.3664 |
| 1.0826        | 7.94  | 992  | 1.0798          | 0.5050   | 0.3503    | 0.4673 | 0.3705 |
| 1.0793        | 9.92  | 1240 | 1.0780          | 0.5030   | 0.3506    | 0.4661 | 0.3695 |


### Framework versions

- Transformers 4.20.1
- Pytorch 1.10.1+cu111
- Datasets 2.3.2
- Tokenizers 0.12.1