--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: indic-bert-finetuned-non-code-mixed-DS results: [] --- # indic-bert-finetuned-non-code-mixed-DS This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co./ai4bharat/indic-bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9997 - Accuracy: 0.5620 - Precision: 0.5591 - Recall: 0.5203 - F1: 0.5078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 32 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0673 | 3.99 | 926 | 1.0361 | 0.4142 | 0.4092 | 0.3851 | 0.2750 | | 1.0144 | 7.98 | 1852 | 1.0147 | 0.5146 | 0.5851 | 0.4714 | 0.4184 | | 0.9882 | 11.97 | 2778 | 1.0045 | 0.5599 | 0.5728 | 0.5191 | 0.5047 | | 0.9699 | 15.97 | 3704 | 1.0004 | 0.5642 | 0.5620 | 0.5264 | 0.5193 | | 0.9591 | 19.96 | 4630 | 0.9997 | 0.5620 | 0.5591 | 0.5203 | 0.5078 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1