--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: indic-bert-finetuned-code-mixed-DS results: [] --- # indic-bert-finetuned-code-mixed-DS This model is a fine-tuned version of [ai4bharat/indic-bert](https://huggingface.co./ai4bharat/indic-bert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8981 - Accuracy: 0.5594 - Precision: 0.3838 - Recall: 0.5263 - F1: 0.4118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 43 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.0941 | 2.0 | 497 | 1.0845 | 0.3441 | 0.3615 | 0.4180 | 0.2706 | | 1.0379 | 3.99 | 994 | 0.9775 | 0.5412 | 0.3779 | 0.5128 | 0.4003 | | 0.9509 | 5.99 | 1491 | 0.9271 | 0.5513 | 0.3752 | 0.5144 | 0.4043 | | 0.9152 | 7.98 | 1988 | 0.9047 | 0.5614 | 0.3852 | 0.5275 | 0.4131 | | 0.8953 | 9.98 | 2485 | 0.8981 | 0.5594 | 0.3838 | 0.5263 | 0.4118 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.1+cu111 - Datasets 2.3.2 - Tokenizers 0.12.1