Update README.md
Browse files
README.md
CHANGED
@@ -96,7 +96,7 @@ pipeline_tag: image-segmentation
|
|
96 |
<ul style="list-style-type:disc;">
|
97 |
<li>Trained with the FLAIR-INC dataset</li>
|
98 |
<li>RGB images (true colours)</li>
|
99 |
-
<li>U-Net with a
|
100 |
<li>15 class nomenclature : [building, pervious surface, impervious surface, bare soil, water, coniferous, deciduous, brushwood, vineyard, herbaceous, agricultural land, plowed land, swimming pool, snow, greenhouse]</li>
|
101 |
</ul>
|
102 |
</div>
|
@@ -193,7 +193,7 @@ Statistics of the TRAIN+VALIDATION set :
|
|
193 |
#### Training Hyperparameters
|
194 |
|
195 |
* Model architecture: Unet (implementation from the [Segmentation Models Pytorch library](https://segmentation-modelspytorch.readthedocs.io/en/latest/docs/api.html#unet))
|
196 |
-
* Encoder :
|
197 |
* Augmentation :
|
198 |
* VerticalFlip(p=0.5)
|
199 |
* HorizontalFlip(p=0.5)
|
@@ -264,7 +264,7 @@ The following table give the class-wise metrics :
|
|
264 |
| plowed_land | 42.202 | 59.355 | 65.114 | 54.532 |
|
265 |
| swimming_pool | 0.000 | 0.000 | 0.000 | 0.000 |
|
266 |
| snow | _0.000_ | _0.000_ | _0.000_ | _0.000_ |
|
267 |
-
| greenhouse | 60.884 | 75.687 | 66.
|
268 |
| **average** | **53.440** | **65.146** | **65.517** | **65.644** |
|
269 |
|
270 |
|
@@ -278,9 +278,9 @@ The following illustration gives the resulting confusion matrix :
|
|
278 |
|
279 |
<div style="position: relative; text-align: center;">
|
280 |
<p style="margin: 0;">Normalized Confusion Matrix (precision)</p>
|
281 |
-
<img src="
|
282 |
<p style="margin: 0;">Normalized Confusion Matrix (recall)</p>
|
283 |
-
<img src="
|
284 |
</div>
|
285 |
|
286 |
|
|
|
96 |
<ul style="list-style-type:disc;">
|
97 |
<li>Trained with the FLAIR-INC dataset</li>
|
98 |
<li>RGB images (true colours)</li>
|
99 |
+
<li>U-Net with a mit-b5 encoder</li>
|
100 |
<li>15 class nomenclature : [building, pervious surface, impervious surface, bare soil, water, coniferous, deciduous, brushwood, vineyard, herbaceous, agricultural land, plowed land, swimming pool, snow, greenhouse]</li>
|
101 |
</ul>
|
102 |
</div>
|
|
|
193 |
#### Training Hyperparameters
|
194 |
|
195 |
* Model architecture: Unet (implementation from the [Segmentation Models Pytorch library](https://segmentation-modelspytorch.readthedocs.io/en/latest/docs/api.html#unet))
|
196 |
+
* Encoder : mit-b5 pre-trained with ImageNet
|
197 |
* Augmentation :
|
198 |
* VerticalFlip(p=0.5)
|
199 |
* HorizontalFlip(p=0.5)
|
|
|
264 |
| plowed_land | 42.202 | 59.355 | 65.114 | 54.532 |
|
265 |
| swimming_pool | 0.000 | 0.000 | 0.000 | 0.000 |
|
266 |
| snow | _0.000_ | _0.000_ | _0.000_ | _0.000_ |
|
267 |
+
| greenhouse | 60.884 | 75.687 | 66.620 | 87.609 |
|
268 |
| **average** | **53.440** | **65.146** | **65.517** | **65.644** |
|
269 |
|
270 |
|
|
|
278 |
|
279 |
<div style="position: relative; text-align: center;">
|
280 |
<p style="margin: 0;">Normalized Confusion Matrix (precision)</p>
|
281 |
+
<img src="FLAIR-INC_rgb_15cl_mitb5-unet_confmat_norm-precision.png" alt="drawing" style="width: 70%; display: block; margin: 0 auto;"/>
|
282 |
<p style="margin: 0;">Normalized Confusion Matrix (recall)</p>
|
283 |
+
<img src="FLAIR-INC_rgb_15cl_mitb5-unet_confmat_norm-recall.png" alt="drawing" style="width: 70%; display: block; margin: 0 auto;"/>
|
284 |
</div>
|
285 |
|
286 |
|