wanng commited on
Commit
3075ae3
1 Parent(s): 56a0a8f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -10
README.md CHANGED
@@ -22,15 +22,32 @@ widget:
22
 
23
  ---
24
 
25
- # Wenzhong-GPT2-110M model
26
 
27
-
28
-
29
- Wenzhong-GPT2-110M is one of the Wenzhong series, which has smaller parameters. Wenzhong-GPT2-110M Is the base version of gpt2。
30
 
31
- ## Usage
32
 
33
- ### load model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
 
35
  ```python
36
  from transformers import GPT2Tokenizer,GPT2LMHeadModel
@@ -39,7 +56,7 @@ tokenizer = GPT2Tokenizer.from_pretrained(hf_model_path)
39
  model = GPT2LMHeadModel.from_pretrained(hf_model_path)
40
  ```
41
 
42
- ### generation
43
 
44
  ```python
45
  question = "北京是中国的"
@@ -62,13 +79,31 @@ for idx,sentence in enumerate(generation_output.sequences):
62
  print('*'*40)
63
  ```
64
 
65
- ## Citation
66
- If you find the resource is useful, please cite the following website in your paper.
 
 
 
 
 
 
 
 
 
 
 
 
67
  ```
 
 
 
 
 
 
68
  @misc{Fengshenbang-LM,
69
  title={Fengshenbang-LM},
70
  author={IDEA-CCNL},
71
  year={2021},
72
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
73
  }
74
- ```
 
22
 
23
  ---
24
 
25
+ # Wenzhong-GPT2-110M
26
 
27
+ - Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM)
28
+ - Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/)
 
29
 
30
+ ## 简介 Brief Introduction
31
 
32
+ 善于处理NLG任务,中文版的GPT2-Small。
33
+
34
+ Focused on handling NLG tasks, Chinese GPT2-Small.
35
+
36
+ ## 模型分类 Model Taxonomy
37
+
38
+ | 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra |
39
+ | :----: | :----: | :----: | :----: | :----: | :----: |
40
+ | 通用 General | 自然语言生成 NLG | 闻仲 Wenzhong | GPT2 | 110M | - |
41
+
42
+ ## 模型信息 Model Information
43
+
44
+ 类似于Wenzhong2.0-GPT2-3.5B-chinese,我们实现了一个small版本的12层的Wenzhong-GPT2-110M,并且在悟道(300G版本)上面进行预训练。
45
+
46
+ Similar to Wenzhong2.0-GPT2-3.5B-chinese, we implement a small size Wenzhong-GPT2-110M with 12 layers, which is pre-trained on Wudao Corpus (300G version).
47
+
48
+ ## 使用 Usage
49
+
50
+ ### 加载模型 Loading Models
51
 
52
  ```python
53
  from transformers import GPT2Tokenizer,GPT2LMHeadModel
 
56
  model = GPT2LMHeadModel.from_pretrained(hf_model_path)
57
  ```
58
 
59
+ ### 使用示例 Usage Examples
60
 
61
  ```python
62
  question = "北京是中国的"
 
79
  print('*'*40)
80
  ```
81
 
82
+ ## 引用 Citation
83
+
84
+ 如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2209.02970):
85
+
86
+ If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2209.02970):
87
+
88
+ ```text
89
+ @article{fengshenbang,
90
+ author = {Junjie Wang and Yuxiang Zhang and Lin Zhang and Ping Yang and Xinyu Gao and Ziwei Wu and Xiaoqun Dong and Junqing He and Jianheng Zhuo and Qi Yang and Yongfeng Huang and Xiayu Li and Yanghan Wu and Junyu Lu and Xinyu Zhu and Weifeng Chen and Ting Han and Kunhao Pan and Rui Wang and Hao Wang and Xiaojun Wu and Zhongshen Zeng and Chongpei Chen and Ruyi Gan and Jiaxing Zhang},
91
+ title = {Fengshenbang 1.0: Being the Foundation of Chinese Cognitive Intelligence},
92
+ journal = {CoRR},
93
+ volume = {abs/2209.02970},
94
+ year = {2022}
95
+ }
96
  ```
97
+
98
+ 也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
99
+
100
+ You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/):
101
+
102
+ ```text
103
  @misc{Fengshenbang-LM,
104
  title={Fengshenbang-LM},
105
  author={IDEA-CCNL},
106
  year={2021},
107
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
108
  }
109
+ ```