--- language: - zh license: apache-2.0 tags: - bert inference: true widget: - text: "中国首都位于[MASK]。" --- # Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece,one model of [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM) The 186 million parameter deberta-V2 base model, using 180G Chinese data, 8 3090TI(24G) training for 21 days,which is a encoder-only transformer structure. Consumed totally 500M samples. We pretrained a 128000 vocab from train datasets using sentence piece. And achieve a better in downstream task. ## Task Description Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece is pre-trained by bert like mask task from Deberta [paper](https://readpaper.com/paper/3033187248) ## Usage ```python from transformers import AutoModelForMaskedLM, AutoTokenizer, FillMaskPipeline import torch tokenizer=AutoTokenizer.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece', use_fast=False) model=AutoModelForMaskedLM.from_pretrained('IDEA-CCNL/Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece') text = '中国首都位于[MASK]。' fillmask_pipe = FillMaskPipeline(model, tokenizer) print(fillmask_pipe(text, top_k=10)) ``` ## Finetune We present the dev results on some tasks. | Model | OCNLI | CMNLI | | ---------------------------------------------------- | ------ | ------ | | RoBERTa-base | 0.743 | 0.7973 | | **Erlangshen-DeBERTa-v2-186M-Chinese-SentencePiece** | 0.7625 | 0.81 | ## Citation If you find the resource is useful, please cite the following website in your paper. ``` @misc{Fengshenbang-LM, title={Fengshenbang-LM}, author={IDEA-CCNL}, year={2022}, howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, } ```