--- library_name: transformers license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: kyrgyz_asr results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: ky split: None args: ky metrics: - name: Wer type: wer value: 38.50746268656716 --- # kyrgyz_asr This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3324 - Wer: 38.5075 ## Model description This is a test fine-tuning of Whisper Tiny for the Kyrgyz language using a dataset from the Mozilla Foundation. The code is taken from [this source](https://astanahub.com/en/blog/obuchaem-whisper-small-dlia-raspoznavaniia-kazakhskoi-rechi). ## Intended uses & limitations More information needed ## Training and evaluation data mozilla-foundation/common_voice_17_0 (ky - kyrgyz) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.59 | 0.4735 | 1000 | 0.5917 | 60.8051 | | 0.4987 | 0.9470 | 2000 | 0.4195 | 47.8517 | | 0.3932 | 1.4205 | 3000 | 0.3561 | 42.6685 | | 0.3441 | 1.8939 | 4000 | 0.3324 | 38.5075 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0