File size: 4,120 Bytes
d7c2bc5 3080190 aaa83be d7c2bc5 aaa83be d7c2bc5 aaa83be 3080190 d7c2bc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: apache-2.0
language:
- en
library_name: transformers
thumbnail: "https://huggingface.co./HyperbeeAI/Tulpar-7b-v0/resolve/main/tulpar.png"
---
<p align="center">
<img src="https://huggingface.co./HyperbeeAI/Tulpar-7b-v0/resolve/main/tulpar.png" width="360" height="360" >
</p>
# Model Description
Tulpar-7b is a LLama2-7b-based model trained by Hyperbee.ai. Training is done on a filtered and preprocessed instruction finetuning dataset that includes GPT-4 generated and generally curated datasets like Airoboros and Platypus.
# Example Usage
Loading the model:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("HyperbeeAI/Tulpar-7b-v0")
model = AutoModelForCausalLM.from_pretrained("HyperbeeAI/Tulpar-7b-v0")
```
You can run inference with both of the following prompts:
```python
prompt = f"### User: {input_text}\n\n### Assistant:\n"
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=512)
```
```python
prompt = f"Question: {input_text}\n\nAnswer:"
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(**inputs, do_sample=True, top_p=0.95, top_k=0, max_new_tokens=512)
```
# Evaluation
Our offline HF Leaderboard evaluation results:
||||
|:------:|:--------:|:-------:|
|**Task**|**Metric**|**Value**|
|*arc_challenge*|acc_norm|0.5614|
|*hellaswag*|acc_norm|0.7901|
|*mmlu*|acc_norm|0.5242|
|*truthfulqa_mc*|mc2|0.5160|
|**Average**|-|**0.5979**||
Other GPT4All evaluation results:
||||
|:------:|:--------:|:-------:|
|**Task**|**Metric**|**Value**|
|boolq|acc |0.8306|
|piqa|acc |0.7905|
| |acc_norm|0.7884|
|winogrande|acc |0.7159|
|openbookqa|acc |0.356|
| |acc_norm|0.448|
|**Average** (including HF leaderboard datasets) | | 0.6468|
BigBenchHard results:
||||
|:------:|:--------:|:-------:|
|**Task**|**Metric**|**Value**|
|bigbench_causal_judgement |multiple_choice_grade|0.6105|
|bigbench_date_understanding |multiple_choice_grade|0.6423|
|bigbench_disambiguation_qa |multiple_choice_grade|0.3643|
|bigbench_dyck_languages |multiple_choice_grade|0.2000|
|bigbench_formal_fallacies_syllogisms_negation |multiple_choice_grade|0.5002|
|bigbench_geometric_shapes |multiple_choice_grade|0.0000|
| |exact_str_match |0.0000|
|bigbench_hyperbaton |multiple_choice_grade|0.6754|
|bigbench_logical_deduction_five_objects |multiple_choice_grade|0.2700|
|bigbench_logical_deduction_seven_objects |multiple_choice_grade|0.1929|
|bigbench_logical_deduction_three_objects |multiple_choice_grade|0.4133|
|bigbench_movie_recommendation |multiple_choice_grade|0.3000|
|bigbench_navigate |multiple_choice_grade|0.5000|
|bigbench_reasoning_about_colored_objects |multiple_choice_grade|0.5750|
|bigbench_ruin_names |multiple_choice_grade|0.3281|
|bigbench_salient_translation_error_detection |multiple_choice_grade|0.2976|
|bigbench_snarks |multiple_choice_grade|0.6022|
|bigbench_sports_understanding |multiple_choice_grade|0.5122|
|bigbench_temporal_sequences |multiple_choice_grade|0.1450|
|bigbench_tracking_shuffled_objects_five_objects |multiple_choice_grade|0.1976|
|bigbench_tracking_shuffled_objects_seven_objects|multiple_choice_grade|0.1440|
|bigbench_tracking_shuffled_objects_three_objects|multiple_choice_grade|0.4133|
|**Average**| |0.3754
# Ethical Considerations and Limitations
Tulpar is a technology with potential risks and limitations. This model is finetuned only in English and all language-related scenarios are not covered. As Hyperbee.ai, we neither guarantee ethical, accurate, unbiased, objective responses nor endorse its outputs. Before deploying this model, you are advised to make safety tests for your use case. |