|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" VMistral model configuration""" |
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"HuggingFaceM4/VLM_WebSight_finetuned": "https://huggingface.co./HuggingFaceM4/VLM_WebSight_finetuned/resolve/main/config.json", |
|
} |
|
|
|
|
|
class VMistralVisionConfig(PretrainedConfig): |
|
r""" |
|
""" |
|
model_type = "vmistral" |
|
|
|
def __init__( |
|
self, |
|
hidden_size=768, |
|
intermediate_size=3072, |
|
num_hidden_layers=12, |
|
num_attention_heads=12, |
|
num_channels=3, |
|
image_size=224, |
|
patch_size=32, |
|
hidden_act="gelu_pytorch_tanh", |
|
layer_norm_eps=1e-6, |
|
attention_dropout=0.0, |
|
initializer_range=0.02, |
|
initializer_factor=1.0, |
|
_flash_attn_2_enabled=True, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.initializer_range = initializer_range |
|
self.initializer_factor = initializer_factor |
|
self.attention_dropout = attention_dropout |
|
self.layer_norm_eps = layer_norm_eps |
|
self.hidden_act = hidden_act |
|
self._flash_attn_2_enabled = _flash_attn_2_enabled |
|
|
|
|
|
class VMistralPerceiverConfig(PretrainedConfig): |
|
r""" |
|
TThis is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an |
|
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. |
|
|
|
[mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) |
|
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.1) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
use_resampler (`bool`, *optional*, defaults to `False`): |
|
Whether or not to use the resampler |
|
resampler_n_latents (`int`, *optional*, defaults to ): |
|
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128). |
|
resampler_depth (`int`, *optional*, defaults to 6): |
|
Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3). |
|
resampler_n_heads (`int`, *optional*, defaults to 16): |
|
Number of heads in each Transformer block (for multi-headed self-attention). |
|
resampler_head_dim (`int`, *optional*, defaults to 96): |
|
Dimensionality of each head projection in the Transformer block. |
|
qk_layer_norms_perceiver (`bool`, *optional*, defaults to `False`): |
|
Whether or not to use qk layer norms in perceiver |
|
""" |
|
model_type = "vmistral" |
|
|
|
def __init__( |
|
self, |
|
resampler_n_latents=64, |
|
resampler_depth=6, |
|
resampler_n_heads=16, |
|
resampler_head_dim=96, |
|
qk_layer_norms_perceiver=False, |
|
**kwargs, |
|
): |
|
self.resampler_n_latents = resampler_n_latents |
|
self.resampler_depth = resampler_depth |
|
self.resampler_n_heads = resampler_n_heads |
|
self.resampler_head_dim = resampler_head_dim |
|
self.qk_layer_norms_perceiver = qk_layer_norms_perceiver |
|
|
|
super().__init__(**kwargs) |
|
|
|
|
|
class VMistralConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an |
|
Mistral model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Mistral-7B-v0.1 or Mistral-7B-Instruct-v0.1. |
|
|
|
[mistralai/Mistral-7B-v0.1](https://huggingface.co./mistralai/Mistral-7B-v0.1) |
|
[mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.1) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
additional_vocab_size (`int`, *optional`, defaults to 0): |
|
Additional vocabulary size of the model, typically for the special "<img>" token. Additional vocab tokens |
|
are always trainable whereas regular vocab tokens can be frozen or not. |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`MistralModel`] |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
Dimension of the hidden representations. |
|
intermediate_size (`int`, *optional*, defaults to 14336): |
|
Dimension of the MLP representations. |
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
Number of hidden layers in the Transformer encoder. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
num_key_value_heads (`int`, *optional*, defaults to 8): |
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
by meanpooling all the original heads within that group. For more details checkout [this |
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`. |
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): |
|
The non-linear activation function (function or string) in the decoder. |
|
max_position_embeddings (`int`, *optional*, defaults to `4096*32`): |
|
The maximum sequence length that this model might ever be used with. Mistral's sliding window attention |
|
allows sequence of up to 4096*32 tokens. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
alpha_initializer (`str`, *optional*, defaults to `"zeros"`): |
|
Initialization type for the alphas. |
|
alphas_initializer_range (`float`, *optional*, defaults to 0.0): |
|
The standard deviation of the truncated_normal_initializer for initializing the alphas in the Gated Cross |
|
Attention. |
|
alpha_type (`str`, *optional*, defaults to `"float"`): |
|
Whether the gating alphas should be vectors or single floats. |
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06): |
|
The epsilon used by the rms normalization layers. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
relevant if `config.is_decoder=True`. |
|
pad_token_id (`int`, *optional*): |
|
The id of the padding token. |
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
The id of the "beginning-of-sequence" token. |
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
The id of the "end-of-sequence" token. |
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
Whether the model's input and output word embeddings should be tied. |
|
rope_theta (`float`, *optional*, defaults to 10000.0): |
|
The base period of the RoPE embeddings. |
|
sliding_window (`int`, *optional*, defaults to 4096): |
|
Sliding window attention window size. If not specified, will default to `4096`. |
|
cross_layer_interval (`int`, *optional*, default to 1) |
|
Interval for cross attention (from text to image) layers. |
|
qk_layer_norms (`bool`, *optional*, defaults to `False`): Whether to add layer norm after q and k |
|
freeze_text_layers (`bool`, *optional*, defaults to `True`): Whether to freeze text layers |
|
freeze_text_module_exceptions (`bool`, *optional*, defaults to `[]`): |
|
Exceptions to freezing text layers when `freeze_text_layers` is `True` |
|
freeze_lm_head (`bool`, *optional*, defaults to `False`): Whether to freeze lm head |
|
freeze_vision_layers (`bool`, *optional*, defaults to `True`): Whether to freeze vision layers |
|
freeze_vision_module_exceptions (`bool`, *optional*, defaults to `[]`): |
|
Exceptions to freezing vision layers when `freeze_vision_layers` is `True` |
|
use_resampler (`bool`, *optional*, defaults to `False`): Whether to use the Resampler |
|
vision_config (`IdeficsVisionConfig`, *optional*): Custom vision config or dict |
|
perceiver_config (`IdeficsPerceiverConfig`, *optional*): Custom perceiver config or dict |
|
|
|
Example: |
|
```python |
|
>>> from transformers import MistralModel, MistralConfig |
|
|
|
>>> # Initializing a Mistral 7B style configuration |
|
>>> configuration = MistralConfig() |
|
|
|
>>> # Initializing a model from the Mistral 7B style configuration |
|
>>> model = MistralModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
model_type = "vmistral" |
|
is_composition = False |
|
|
|
def __init__( |
|
self, |
|
additional_vocab_size=0, |
|
vocab_size=32000, |
|
hidden_size=4096, |
|
intermediate_size=14336, |
|
num_hidden_layers=32, |
|
num_attention_heads=32, |
|
num_key_value_heads=8, |
|
hidden_act="silu", |
|
max_position_embeddings=4096 * 32, |
|
initializer_range=0.02, |
|
alpha_initializer="zeros", |
|
alphas_initializer_range=0.0, |
|
alpha_type="float", |
|
rms_norm_eps=1e-6, |
|
use_cache=True, |
|
pad_token_id=0, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
image_token_id=32_001, |
|
tie_word_embeddings=False, |
|
rope_theta=10000.0, |
|
sliding_window=4096, |
|
cross_layer_interval=1, |
|
qk_layer_norms=False, |
|
freeze_text_layers=True, |
|
freeze_text_module_exceptions=[], |
|
freeze_lm_head=False, |
|
freeze_vision_layers=True, |
|
freeze_vision_module_exceptions=[], |
|
attention_dropout=0.0, |
|
_flash_attn_2_enabled=True, |
|
use_resampler=False, |
|
vision_config=None, |
|
perceiver_config=None, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.additional_vocab_size = additional_vocab_size |
|
self.image_token_id = image_token_id |
|
self.max_position_embeddings = max_position_embeddings |
|
self.hidden_size = hidden_size |
|
self.intermediate_size = intermediate_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.sliding_window = sliding_window |
|
|
|
|
|
if num_key_value_heads is None: |
|
num_key_value_heads = num_attention_heads |
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
self.hidden_act = hidden_act |
|
self.initializer_range = initializer_range |
|
self.alpha_initializer = alpha_initializer |
|
self.alphas_initializer_range = alphas_initializer_range |
|
self.alpha_type = alpha_type |
|
self.rms_norm_eps = rms_norm_eps |
|
self.use_cache = use_cache |
|
self.rope_theta = rope_theta |
|
|
|
self.cross_layer_interval = cross_layer_interval |
|
self.qk_layer_norms = qk_layer_norms |
|
self.freeze_vision_layers = freeze_vision_layers |
|
|
|
self.freeze_text_layers = freeze_text_layers |
|
self.freeze_text_module_exceptions = freeze_text_module_exceptions |
|
self.freeze_vision_module_exceptions = freeze_vision_module_exceptions |
|
self.freeze_lm_head = freeze_lm_head |
|
|
|
self.use_resampler = use_resampler |
|
self._flash_attn_2_enabled = _flash_attn_2_enabled |
|
self.attention_dropout = attention_dropout |
|
|
|
if perceiver_config is None: |
|
self.perceiver_config = VMistralPerceiverConfig() |
|
elif isinstance(perceiver_config, dict): |
|
self.perceiver_config = VMistralPerceiverConfig(**perceiver_config) |
|
elif isinstance(perceiver_config, VMistralPerceiverConfig): |
|
self.perceiver_config = perceiver_config |
|
|
|
if vision_config is None: |
|
self.vision_config = VMistralVisionConfig() |
|
elif isinstance(vision_config, dict): |
|
self.vision_config = VMistralVisionConfig(**vision_config) |
|
elif isinstance(vision_config, VMistralVisionConfig): |
|
self.vision_config = vision_config |
|
|
|
super().__init__( |
|
pad_token_id=pad_token_id, |
|
bos_token_id=bos_token_id, |
|
eos_token_id=eos_token_id, |
|
tie_word_embeddings=tie_word_embeddings, |
|
**kwargs, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|