File size: 4,911 Bytes
1d50033 f75c568 1d50033 f75c568 1d50033 5ebac5e 1d50033 5ebac5e 1d50033 5f5d133 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 5f5d133 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 76fd6d2 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 1d50033 f75c568 5f5d133 f3266d6 5f5d133 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
---
language:
- en
pipeline_tag: image-to-text
inference: false
arxiv: 2304.08485
datasets:
- HuggingFaceH4/llava-instruct-mix-vsft
---
# Model Card
HuggingFaceH4/vsft-llava-1.5-7b-hf-trl is a Vision Language Model, created by performing VSFT on the [llava-hf/llava-1.5-7b-hf](https://huggingface.co./llava-hf/llava-1.5-7b-hf) model with 260k image and conversation pairs from the [HuggingFaceH4/llava-instruct-mix-vsft](https://huggingface.co./datasets/HuggingFaceH4/llava-instruct-mix-vsft) dataset.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6200d0a443eb0913fa2df7cc/q5GXv6Om4Hf2n6IB3e7DQ.png)
Or check out our Spaces demo! [![Open in Spaces](https://huggingface.co./datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md-dark.svg)](https://huggingface.co./spaces/HuggingFaceH4/vlm-playground)
## Model details
**Model type:**
LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
It is an auto-regressive language model, based on the transformer architecture.
**Model date:**
The model was trained on April the 11th 2024
**Example training script**
[Train a VLM yourself with our TRL example](https://github.com/huggingface/trl/blob/main/examples/scripts/vsft_llava.py)
## How to use the model
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:
### Using `pipeline`:
```python
from transformers import pipeline
from PIL import Image
import requests
model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"
pipe = pipeline("image-to-text", model=model_id)
url = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT:"
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
>>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
```
### Using pure `transformers`:
Below is an example script to run generation in `float16` precision on a GPU device:
```python
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"
prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat are these?\nASSISTANT:"
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(0)
processor = AutoProcessor.from_pretrained(model_id)
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```
### Model optimization
#### 4-bit quantization through `bitsandbytes` library
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
```diff
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ load_in_4bit=True
)
```
#### Use Flash-Attention 2 to further speed-up generation
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
```diff
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ use_flash_attention_2=True
).to(0)
```
## License
Llama 2 is licensed under the LLAMA 2 Community License,
Copyright (c) Meta Platforms, Inc. All Rights Reserved.
## Citation
```
@misc{vonwerra2022trl,
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang},
title = {TRL: Transformer Reinforcement Learning},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
|