--- tags: - spacy - token-classification language: - en license: apache-2.0 widget: - text: "But one other thing that we have to re;think is the way that we dy£ our #c!l.o|th?£+s." example_title: "Word camouflage detection" model-index: - name: en_roberta_base_leetspeak_ner results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.7966001851 - name: NER Recall type: recall value: 0.8619559279 - name: NER F Score type: f_score value: 0.8279903783 --- | Feature | Description | | --- | --- | | **Name** | `en_roberta_base_leetspeak_ner` | | **Version** | `0.0.0` | | **spaCy** | `>=3.2.1,<3.3.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [roberta-base](https://huggingface.co./roberta-base) pre-trained model on English language using a masked language modeling (MLM) objective by Yinhan Liu et al.
[LeetSpeak-NER](https://huggingface.co./spaces/Huertas97/LeetSpeak-NER) app where this model is in production for countering information disorders| | **License** | Apache 2.0 | | **Author** | [Álvaro Huertas García](https://www.linkedin.com/in/alvaro-huertas-garcia/) at [AI+DA](http://aida.etsisi.upm.es/) | ### Label Scheme
View label scheme (4 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `INV_CAMO`, `LEETSPEAK`, `MIX`, `PUNCT_CAMO` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 82.80 | | `ENTS_P` | 79.66 | | `ENTS_R` | 86.20 | | `TRANSFORMER_LOSS` | 177808.42 | | `NER_LOSS` | 608427.31 |