--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: vit-base-patch16-224 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9033333333333333 - name: Precision type: precision value: 0.892075919335706 - name: Recall type: recall value: 0.9033333333333333 --- # vit-base-patch16-224 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2446 - Accuracy: 0.9033 - Precision: 0.8921 - Recall: 0.9033 - F1 Score: 0.8889 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.5037 | 0.8667 | 0.8150 | 0.8667 | 0.8224 | | No log | 2.0 | 8 | 0.3500 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | No log | 3.0 | 12 | 0.3154 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.5284 | 4.0 | 16 | 0.2974 | 0.8833 | 0.8659 | 0.8833 | 0.8497 | | 0.5284 | 5.0 | 20 | 0.2954 | 0.8875 | 0.8731 | 0.8875 | 0.8768 | | 0.5284 | 6.0 | 24 | 0.2721 | 0.8958 | 0.8871 | 0.8958 | 0.8716 | | 0.5284 | 7.0 | 28 | 0.2679 | 0.8875 | 0.8817 | 0.8875 | 0.8527 | | 0.3362 | 8.0 | 32 | 0.2634 | 0.8875 | 0.8817 | 0.8875 | 0.8527 | | 0.3362 | 9.0 | 36 | 0.2507 | 0.9042 | 0.8953 | 0.9042 | 0.8879 | | 0.3362 | 10.0 | 40 | 0.2439 | 0.9083 | 0.9006 | 0.9083 | 0.8941 | | 0.3362 | 11.0 | 44 | 0.2589 | 0.8917 | 0.8861 | 0.8917 | 0.8884 | | 0.3017 | 12.0 | 48 | 0.2428 | 0.9083 | 0.9005 | 0.9083 | 0.9024 | | 0.3017 | 13.0 | 52 | 0.2543 | 0.9 | 0.8949 | 0.9 | 0.8970 | | 0.3017 | 14.0 | 56 | 0.2651 | 0.8958 | 0.8944 | 0.8958 | 0.8951 | | 0.278 | 15.0 | 60 | 0.2637 | 0.8958 | 0.8944 | 0.8958 | 0.8951 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3