--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: vit-base-patch16-224 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7766666666666666 - name: Precision type: precision value: 0.7660774253731343 - name: Recall type: recall value: 0.7766666666666666 --- # vit-base-patch16-224 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5054 - Accuracy: 0.7767 - Precision: 0.7661 - Recall: 0.7767 - F1 Score: 0.7395 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.6002 | 0.7208 | 0.6144 | 0.7208 | 0.6282 | | No log | 2.0 | 8 | 0.5620 | 0.7333 | 0.5378 | 0.7333 | 0.6205 | | No log | 3.0 | 12 | 0.5641 | 0.7208 | 0.6144 | 0.7208 | 0.6282 | | No log | 4.0 | 16 | 0.5504 | 0.7208 | 0.6453 | 0.7208 | 0.6460 | | No log | 5.0 | 20 | 0.5444 | 0.7292 | 0.6795 | 0.7292 | 0.6754 | | No log | 6.0 | 24 | 0.5713 | 0.7333 | 0.5378 | 0.7333 | 0.6205 | | No log | 7.0 | 28 | 0.5488 | 0.7375 | 0.8067 | 0.7375 | 0.6302 | | 0.5813 | 8.0 | 32 | 0.5408 | 0.7417 | 0.8090 | 0.7417 | 0.6397 | | 0.5813 | 9.0 | 36 | 0.5387 | 0.7542 | 0.7292 | 0.7542 | 0.7015 | | 0.5813 | 10.0 | 40 | 0.5314 | 0.75 | 0.7212 | 0.75 | 0.6943 | | 0.5813 | 11.0 | 44 | 0.5283 | 0.7792 | 0.7813 | 0.7792 | 0.7318 | | 0.5813 | 12.0 | 48 | 0.5227 | 0.7667 | 0.7819 | 0.7667 | 0.7019 | | 0.5813 | 13.0 | 52 | 0.5283 | 0.7583 | 0.7336 | 0.7583 | 0.7308 | | 0.5813 | 14.0 | 56 | 0.5263 | 0.7583 | 0.7393 | 0.7583 | 0.7045 | | 0.5092 | 15.0 | 60 | 0.5205 | 0.7667 | 0.7819 | 0.7667 | 0.7019 | | 0.5092 | 16.0 | 64 | 0.5236 | 0.7625 | 0.8206 | 0.7625 | 0.6837 | | 0.5092 | 17.0 | 68 | 0.5241 | 0.7667 | 0.8230 | 0.7667 | 0.6919 | | 0.5092 | 18.0 | 72 | 0.4962 | 0.7708 | 0.7639 | 0.7708 | 0.7217 | | 0.5092 | 19.0 | 76 | 0.4942 | 0.7708 | 0.7878 | 0.7708 | 0.7094 | | 0.5092 | 20.0 | 80 | 0.4909 | 0.7667 | 0.7503 | 0.7667 | 0.7221 | | 0.5092 | 21.0 | 84 | 0.4964 | 0.7583 | 0.7343 | 0.7583 | 0.7334 | | 0.5092 | 22.0 | 88 | 0.4928 | 0.7583 | 0.7393 | 0.7583 | 0.7045 | | 0.4804 | 23.0 | 92 | 0.4938 | 0.7542 | 0.7292 | 0.7542 | 0.7015 | | 0.4804 | 24.0 | 96 | 0.4949 | 0.7583 | 0.7327 | 0.7583 | 0.7253 | | 0.4804 | 25.0 | 100 | 0.4946 | 0.7542 | 0.7268 | 0.7542 | 0.7220 | | 0.4804 | 26.0 | 104 | 0.4935 | 0.7583 | 0.7330 | 0.7583 | 0.7281 | | 0.4804 | 27.0 | 108 | 0.4927 | 0.7542 | 0.7268 | 0.7542 | 0.7220 | | 0.4804 | 28.0 | 112 | 0.4943 | 0.7542 | 0.7268 | 0.7542 | 0.7220 | | 0.4804 | 29.0 | 116 | 0.4951 | 0.7542 | 0.7268 | 0.7542 | 0.7220 | | 0.4442 | 30.0 | 120 | 0.4952 | 0.75 | 0.7203 | 0.75 | 0.7158 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3