--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: vit-base-patch16-224 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8033333333333333 - name: Precision type: precision value: 0.7988653846153846 - name: Recall type: recall value: 0.8033333333333333 --- # vit-base-patch16-224 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4775 - Accuracy: 0.8033 - Precision: 0.7989 - Recall: 0.8033 - F1 Score: 0.7784 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 8 | 0.5941 | 0.7333 | 0.5378 | 0.7333 | 0.6205 | | 0.6385 | 2.0 | 16 | 0.5391 | 0.775 | 0.7830 | 0.775 | 0.7210 | | 0.546 | 3.0 | 24 | 0.5417 | 0.775 | 0.7658 | 0.775 | 0.7321 | | 0.481 | 4.0 | 32 | 0.5486 | 0.7833 | 0.8030 | 0.7833 | 0.7313 | | 0.3841 | 5.0 | 40 | 0.5420 | 0.7875 | 0.7825 | 0.7875 | 0.7515 | | 0.3841 | 6.0 | 48 | 0.5246 | 0.8292 | 0.8358 | 0.8292 | 0.8068 | | 0.2565 | 7.0 | 56 | 0.5763 | 0.8083 | 0.8070 | 0.8083 | 0.7821 | | 0.1605 | 8.0 | 64 | 0.5433 | 0.825 | 0.8180 | 0.825 | 0.8120 | | 0.0824 | 9.0 | 72 | 0.6010 | 0.8125 | 0.8027 | 0.8125 | 0.7994 | | 0.0489 | 10.0 | 80 | 0.6063 | 0.8125 | 0.8032 | 0.8125 | 0.7977 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3