--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: vit-base-patch16-224 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7833333333333333 - name: Precision type: precision value: 0.7701923076923076 - name: Recall type: recall value: 0.7833333333333333 --- # vit-base-patch16-224 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4772 - Accuracy: 0.7833 - Precision: 0.7702 - Recall: 0.7833 - F1 Score: 0.7559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.6010 | 0.7333 | 0.6725 | 0.7333 | 0.6280 | | No log | 2.0 | 8 | 0.5552 | 0.7375 | 0.8067 | 0.7375 | 0.6302 | | No log | 3.0 | 12 | 0.5450 | 0.7542 | 0.7598 | 0.7542 | 0.6782 | | 0.576 | 4.0 | 16 | 0.5325 | 0.75 | 0.7707 | 0.75 | 0.6641 | | 0.576 | 5.0 | 20 | 0.5234 | 0.75 | 0.7232 | 0.75 | 0.6900 | | 0.576 | 6.0 | 24 | 0.5112 | 0.7625 | 0.7506 | 0.7625 | 0.7076 | | 0.576 | 7.0 | 28 | 0.5082 | 0.7667 | 0.7503 | 0.7667 | 0.7221 | | 0.4876 | 8.0 | 32 | 0.5067 | 0.7667 | 0.7466 | 0.7667 | 0.7288 | | 0.4876 | 9.0 | 36 | 0.5091 | 0.7792 | 0.7623 | 0.7792 | 0.7528 | | 0.4876 | 10.0 | 40 | 0.5023 | 0.7583 | 0.7393 | 0.7583 | 0.7045 | | 0.4876 | 11.0 | 44 | 0.4911 | 0.7708 | 0.7507 | 0.7708 | 0.7435 | | 0.4379 | 12.0 | 48 | 0.4921 | 0.7667 | 0.7487 | 0.7667 | 0.7513 | | 0.4379 | 13.0 | 52 | 0.4906 | 0.7917 | 0.7792 | 0.7917 | 0.7680 | | 0.4379 | 14.0 | 56 | 0.4919 | 0.7875 | 0.7731 | 0.7875 | 0.7645 | | 0.4003 | 15.0 | 60 | 0.4929 | 0.7833 | 0.7678 | 0.7833 | 0.7587 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3