File size: 2,972 Bytes
d890e45 86c5540 d890e45 86c5540 d890e45 86c5540 d890e45 86c5540 d890e45 86c5540 d890e45 86c5540 d890e45 86c5540 d890e45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- precision
- recall
model-index:
- name: vit-base-patch16-224
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8033333333333333
- name: Precision
type: precision
value: 0.7988653846153846
- name: Recall
type: recall
value: 0.8033333333333333
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4775
- Accuracy: 0.8033
- Precision: 0.7989
- Recall: 0.8033
- F1 Score: 0.7784
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
| No log | 1.0 | 8 | 0.5941 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
| 0.6385 | 2.0 | 16 | 0.5391 | 0.775 | 0.7830 | 0.775 | 0.7210 |
| 0.546 | 3.0 | 24 | 0.5417 | 0.775 | 0.7658 | 0.775 | 0.7321 |
| 0.481 | 4.0 | 32 | 0.5486 | 0.7833 | 0.8030 | 0.7833 | 0.7313 |
| 0.3841 | 5.0 | 40 | 0.5420 | 0.7875 | 0.7825 | 0.7875 | 0.7515 |
| 0.3841 | 6.0 | 48 | 0.5246 | 0.8292 | 0.8358 | 0.8292 | 0.8068 |
| 0.2565 | 7.0 | 56 | 0.5763 | 0.8083 | 0.8070 | 0.8083 | 0.7821 |
| 0.1605 | 8.0 | 64 | 0.5433 | 0.825 | 0.8180 | 0.825 | 0.8120 |
| 0.0824 | 9.0 | 72 | 0.6010 | 0.8125 | 0.8027 | 0.8125 | 0.7994 |
| 0.0489 | 10.0 | 80 | 0.6063 | 0.8125 | 0.8032 | 0.8125 | 0.7977 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3
|