--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: swin-tiny-patch4-window7-224 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7466666666666667 - name: Precision type: precision value: 0.7167033192888707 - name: Recall type: recall value: 0.7466666666666667 --- # swin-tiny-patch4-window7-224 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6199 - Accuracy: 0.7467 - Precision: 0.7167 - Recall: 0.7467 - F1 Score: 0.7110 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 8 | 0.5333 | 0.7583 | 0.7348 | 0.7583 | 0.7122 | | 0.4735 | 2.0 | 16 | 0.5572 | 0.7708 | 0.7878 | 0.7708 | 0.7094 | | 0.4492 | 3.0 | 24 | 0.5569 | 0.775 | 0.7830 | 0.775 | 0.7210 | | 0.3847 | 4.0 | 32 | 0.6170 | 0.7625 | 0.7640 | 0.7625 | 0.6989 | | 0.337 | 5.0 | 40 | 0.5983 | 0.7625 | 0.7417 | 0.7625 | 0.7189 | | 0.337 | 6.0 | 48 | 0.5763 | 0.7708 | 0.7507 | 0.7708 | 0.7435 | | 0.3118 | 7.0 | 56 | 0.6043 | 0.7792 | 0.7661 | 0.7792 | 0.7448 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3