--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: swin-tiny-patch4-window7-224 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8933333333333333 - name: Precision type: precision value: 0.8772576832151301 - name: Recall type: recall value: 0.8933333333333333 --- # swin-tiny-patch4-window7-224 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2912 - Accuracy: 0.8933 - Precision: 0.8773 - Recall: 0.8933 - F1 Score: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.4588 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | No log | 2.0 | 8 | 0.3854 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | No log | 3.0 | 12 | 0.4070 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4953 | 4.0 | 16 | 0.3890 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4953 | 5.0 | 20 | 0.3688 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4953 | 6.0 | 24 | 0.3549 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4953 | 7.0 | 28 | 0.3138 | 0.8708 | 0.7584 | 0.8708 | 0.8107 | | 0.4217 | 8.0 | 32 | 0.3330 | 0.8708 | 0.8312 | 0.8708 | 0.8308 | | 0.4217 | 9.0 | 36 | 0.2946 | 0.9 | 0.8881 | 0.9 | 0.8845 | | 0.4217 | 10.0 | 40 | 0.2753 | 0.9042 | 0.8938 | 0.9042 | 0.8905 | | 0.4217 | 11.0 | 44 | 0.2996 | 0.9 | 0.8909 | 0.9 | 0.8935 | | 0.3747 | 12.0 | 48 | 0.2684 | 0.9 | 0.8883 | 0.9 | 0.8894 | | 0.3747 | 13.0 | 52 | 0.2670 | 0.9 | 0.8883 | 0.9 | 0.8894 | | 0.3747 | 14.0 | 56 | 0.2722 | 0.9042 | 0.8940 | 0.9042 | 0.8951 | | 0.3579 | 15.0 | 60 | 0.2718 | 0.9042 | 0.8940 | 0.9042 | 0.8951 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3