--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: swin-tiny-patch4-window7-224 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7133333333333334 - name: Precision type: precision value: 0.6732516172965611 - name: Recall type: recall value: 0.7133333333333334 --- # swin-tiny-patch4-window7-224 This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5797 - Accuracy: 0.7133 - Precision: 0.6733 - Recall: 0.7133 - F1 Score: 0.6650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.5965 | 0.725 | 0.5256 | 0.725 | 0.6094 | | No log | 2.0 | 8 | 0.6045 | 0.7125 | 0.5795 | 0.7125 | 0.6104 | | No log | 3.0 | 12 | 0.5910 | 0.725 | 0.6645 | 0.725 | 0.6169 | | 0.6165 | 4.0 | 16 | 0.5865 | 0.7333 | 0.7162 | 0.7333 | 0.6418 | | 0.6165 | 5.0 | 20 | 0.5789 | 0.7292 | 0.6846 | 0.7292 | 0.6562 | | 0.6165 | 6.0 | 24 | 0.5649 | 0.725 | 0.6702 | 0.725 | 0.6427 | | 0.6165 | 7.0 | 28 | 0.5660 | 0.7375 | 0.7090 | 0.7375 | 0.6668 | | 0.5966 | 8.0 | 32 | 0.5972 | 0.7375 | 0.7108 | 0.7375 | 0.7132 | | 0.5966 | 9.0 | 36 | 0.5666 | 0.7417 | 0.7134 | 0.7417 | 0.6835 | | 0.5966 | 10.0 | 40 | 0.5781 | 0.7417 | 0.7124 | 0.7417 | 0.7084 | | 0.5966 | 11.0 | 44 | 0.6009 | 0.7083 | 0.6900 | 0.7083 | 0.6967 | | 0.5921 | 12.0 | 48 | 0.5678 | 0.75 | 0.7244 | 0.75 | 0.7118 | | 0.5921 | 13.0 | 52 | 0.5581 | 0.7583 | 0.7429 | 0.7583 | 0.7115 | | 0.5921 | 14.0 | 56 | 0.5587 | 0.7542 | 0.7340 | 0.7542 | 0.7083 | | 0.5847 | 15.0 | 60 | 0.5589 | 0.7542 | 0.7340 | 0.7542 | 0.7083 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3