--- license: other tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-segments-toolwear results: [] --- # segformer-b0-finetuned-segments-toolwear This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co./nvidia/mit-b0) on the HorcruxNo13/toolwear_complete_tool dataset. It achieves the following results on the evaluation set: - Loss: 0.0236 - Mean Iou: 0.4952 - Mean Accuracy: 0.9904 - Overall Accuracy: 0.9904 - Accuracy Unlabeled: nan - Accuracy Tool: 0.9904 - Iou Unlabeled: 0.0 - Iou Tool: 0.9904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Iou Unlabeled | Iou Tool | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:| | 0.1696 | 1.18 | 20 | 0.3490 | 0.4962 | 0.9924 | 0.9924 | nan | 0.9924 | 0.0 | 0.9924 | | 0.1045 | 2.35 | 40 | 0.0977 | 0.4878 | 0.9755 | 0.9755 | nan | 0.9755 | 0.0 | 0.9755 | | 0.0871 | 3.53 | 60 | 0.0650 | 0.4952 | 0.9905 | 0.9905 | nan | 0.9905 | 0.0 | 0.9905 | | 0.0542 | 4.71 | 80 | 0.0652 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 | | 0.0507 | 5.88 | 100 | 0.0573 | 0.4952 | 0.9905 | 0.9905 | nan | 0.9905 | 0.0 | 0.9905 | | 0.0708 | 7.06 | 120 | 0.0510 | 0.4941 | 0.9883 | 0.9883 | nan | 0.9883 | 0.0 | 0.9883 | | 0.0455 | 8.24 | 140 | 0.0487 | 0.4892 | 0.9784 | 0.9784 | nan | 0.9784 | 0.0 | 0.9784 | | 0.0489 | 9.41 | 160 | 0.0430 | 0.4934 | 0.9867 | 0.9867 | nan | 0.9867 | 0.0 | 0.9867 | | 0.048 | 10.59 | 180 | 0.0409 | 0.4940 | 0.9880 | 0.9880 | nan | 0.9880 | 0.0 | 0.9880 | | 0.0476 | 11.76 | 200 | 0.0347 | 0.4965 | 0.9931 | 0.9931 | nan | 0.9931 | 0.0 | 0.9931 | | 0.048 | 12.94 | 220 | 0.0366 | 0.4972 | 0.9944 | 0.9944 | nan | 0.9944 | 0.0 | 0.9944 | | 0.0242 | 14.12 | 240 | 0.0342 | 0.4963 | 0.9926 | 0.9926 | nan | 0.9926 | 0.0 | 0.9926 | | 0.0276 | 15.29 | 260 | 0.0305 | 0.4967 | 0.9934 | 0.9934 | nan | 0.9934 | 0.0 | 0.9934 | | 0.0192 | 16.47 | 280 | 0.0318 | 0.4956 | 0.9913 | 0.9913 | nan | 0.9913 | 0.0 | 0.9913 | | 0.0382 | 17.65 | 300 | 0.0285 | 0.4964 | 0.9929 | 0.9929 | nan | 0.9929 | 0.0 | 0.9929 | | 0.0244 | 18.82 | 320 | 0.0282 | 0.4952 | 0.9904 | 0.9904 | nan | 0.9904 | 0.0 | 0.9904 | | 0.0272 | 20.0 | 340 | 0.0269 | 0.4955 | 0.9911 | 0.9911 | nan | 0.9911 | 0.0 | 0.9911 | | 0.0174 | 21.18 | 360 | 0.0281 | 0.4955 | 0.9910 | 0.9910 | nan | 0.9910 | 0.0 | 0.9910 | | 0.0276 | 22.35 | 380 | 0.0270 | 0.4958 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 | | 0.0268 | 23.53 | 400 | 0.0272 | 0.4950 | 0.9900 | 0.9900 | nan | 0.9900 | 0.0 | 0.9900 | | 0.0373 | 24.71 | 420 | 0.0253 | 0.4939 | 0.9878 | 0.9878 | nan | 0.9878 | 0.0 | 0.9878 | | 0.023 | 25.88 | 440 | 0.0264 | 0.4935 | 0.9869 | 0.9869 | nan | 0.9869 | 0.0 | 0.9869 | | 0.0183 | 27.06 | 460 | 0.0257 | 0.4960 | 0.9919 | 0.9919 | nan | 0.9919 | 0.0 | 0.9919 | | 0.024 | 28.24 | 480 | 0.0256 | 0.4950 | 0.9900 | 0.9900 | nan | 0.9900 | 0.0 | 0.9900 | | 0.0145 | 29.41 | 500 | 0.0246 | 0.4956 | 0.9911 | 0.9911 | nan | 0.9911 | 0.0 | 0.9911 | | 0.0158 | 30.59 | 520 | 0.0251 | 0.4947 | 0.9894 | 0.9894 | nan | 0.9894 | 0.0 | 0.9894 | | 0.017 | 31.76 | 540 | 0.0247 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 | | 0.018 | 32.94 | 560 | 0.0237 | 0.4965 | 0.9930 | 0.9930 | nan | 0.9930 | 0.0 | 0.9930 | | 0.0161 | 34.12 | 580 | 0.0238 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 | | 0.0191 | 35.29 | 600 | 0.0241 | 0.4950 | 0.9901 | 0.9901 | nan | 0.9901 | 0.0 | 0.9901 | | 0.0133 | 36.47 | 620 | 0.0240 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 | | 0.0118 | 37.65 | 640 | 0.0244 | 0.4949 | 0.9897 | 0.9897 | nan | 0.9897 | 0.0 | 0.9897 | | 0.0133 | 38.82 | 660 | 0.0229 | 0.4961 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 | 0.9922 | | 0.0199 | 40.0 | 680 | 0.0236 | 0.4958 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 | | 0.0167 | 41.18 | 700 | 0.0234 | 0.4961 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 | 0.9922 | | 0.0119 | 42.35 | 720 | 0.0234 | 0.4957 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 | | 0.0154 | 43.53 | 740 | 0.0243 | 0.4950 | 0.9901 | 0.9901 | nan | 0.9901 | 0.0 | 0.9901 | | 0.0126 | 44.71 | 760 | 0.0242 | 0.4949 | 0.9898 | 0.9898 | nan | 0.9898 | 0.0 | 0.9898 | | 0.0128 | 45.88 | 780 | 0.0243 | 0.4955 | 0.9911 | 0.9911 | nan | 0.9911 | 0.0 | 0.9911 | | 0.0116 | 47.06 | 800 | 0.0239 | 0.4953 | 0.9907 | 0.9907 | nan | 0.9907 | 0.0 | 0.9907 | | 0.0121 | 48.24 | 820 | 0.0239 | 0.4954 | 0.9909 | 0.9909 | nan | 0.9909 | 0.0 | 0.9909 | | 0.0165 | 49.41 | 840 | 0.0236 | 0.4952 | 0.9904 | 0.9904 | nan | 0.9904 | 0.0 | 0.9904 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.1.0+cu121 - Datasets 2.16.0 - Tokenizers 0.13.3