HorcruxNo13
commited on
Commit
•
d83b148
1
Parent(s):
f71b6da
update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: segformer-b0-finetuned-segments-toolwear
|
@@ -12,18 +14,16 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# segformer-b0-finetuned-segments-toolwear
|
14 |
|
15 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
-
- Accuracy Tool:
|
23 |
-
- Accuracy Wear: 0.8306
|
24 |
- Iou Unlabeled: 0.0
|
25 |
-
- Iou Tool:
|
26 |
-
- Iou Wear: 0.8306
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -52,50 +52,50 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool |
|
56 |
-
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
|
100 |
|
101 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: segformer-b0-finetuned-segments-toolwear
|
|
|
14 |
|
15 |
# segformer-b0-finetuned-segments-toolwear
|
16 |
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_complete_tool dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0236
|
20 |
+
- Mean Iou: 0.4952
|
21 |
+
- Mean Accuracy: 0.9904
|
22 |
+
- Overall Accuracy: 0.9904
|
23 |
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Tool: 0.9904
|
|
|
25 |
- Iou Unlabeled: 0.0
|
26 |
+
- Iou Tool: 0.9904
|
|
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Iou Unlabeled | Iou Tool |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
|
57 |
+
| 0.1696 | 1.18 | 20 | 0.3490 | 0.4962 | 0.9924 | 0.9924 | nan | 0.9924 | 0.0 | 0.9924 |
|
58 |
+
| 0.1045 | 2.35 | 40 | 0.0977 | 0.4878 | 0.9755 | 0.9755 | nan | 0.9755 | 0.0 | 0.9755 |
|
59 |
+
| 0.0871 | 3.53 | 60 | 0.0650 | 0.4952 | 0.9905 | 0.9905 | nan | 0.9905 | 0.0 | 0.9905 |
|
60 |
+
| 0.0542 | 4.71 | 80 | 0.0652 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 |
|
61 |
+
| 0.0507 | 5.88 | 100 | 0.0573 | 0.4952 | 0.9905 | 0.9905 | nan | 0.9905 | 0.0 | 0.9905 |
|
62 |
+
| 0.0708 | 7.06 | 120 | 0.0510 | 0.4941 | 0.9883 | 0.9883 | nan | 0.9883 | 0.0 | 0.9883 |
|
63 |
+
| 0.0455 | 8.24 | 140 | 0.0487 | 0.4892 | 0.9784 | 0.9784 | nan | 0.9784 | 0.0 | 0.9784 |
|
64 |
+
| 0.0489 | 9.41 | 160 | 0.0430 | 0.4934 | 0.9867 | 0.9867 | nan | 0.9867 | 0.0 | 0.9867 |
|
65 |
+
| 0.048 | 10.59 | 180 | 0.0409 | 0.4940 | 0.9880 | 0.9880 | nan | 0.9880 | 0.0 | 0.9880 |
|
66 |
+
| 0.0476 | 11.76 | 200 | 0.0347 | 0.4965 | 0.9931 | 0.9931 | nan | 0.9931 | 0.0 | 0.9931 |
|
67 |
+
| 0.048 | 12.94 | 220 | 0.0366 | 0.4972 | 0.9944 | 0.9944 | nan | 0.9944 | 0.0 | 0.9944 |
|
68 |
+
| 0.0242 | 14.12 | 240 | 0.0342 | 0.4963 | 0.9926 | 0.9926 | nan | 0.9926 | 0.0 | 0.9926 |
|
69 |
+
| 0.0276 | 15.29 | 260 | 0.0305 | 0.4967 | 0.9934 | 0.9934 | nan | 0.9934 | 0.0 | 0.9934 |
|
70 |
+
| 0.0192 | 16.47 | 280 | 0.0318 | 0.4956 | 0.9913 | 0.9913 | nan | 0.9913 | 0.0 | 0.9913 |
|
71 |
+
| 0.0382 | 17.65 | 300 | 0.0285 | 0.4964 | 0.9929 | 0.9929 | nan | 0.9929 | 0.0 | 0.9929 |
|
72 |
+
| 0.0244 | 18.82 | 320 | 0.0282 | 0.4952 | 0.9904 | 0.9904 | nan | 0.9904 | 0.0 | 0.9904 |
|
73 |
+
| 0.0272 | 20.0 | 340 | 0.0269 | 0.4955 | 0.9911 | 0.9911 | nan | 0.9911 | 0.0 | 0.9911 |
|
74 |
+
| 0.0174 | 21.18 | 360 | 0.0281 | 0.4955 | 0.9910 | 0.9910 | nan | 0.9910 | 0.0 | 0.9910 |
|
75 |
+
| 0.0276 | 22.35 | 380 | 0.0270 | 0.4958 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
|
76 |
+
| 0.0268 | 23.53 | 400 | 0.0272 | 0.4950 | 0.9900 | 0.9900 | nan | 0.9900 | 0.0 | 0.9900 |
|
77 |
+
| 0.0373 | 24.71 | 420 | 0.0253 | 0.4939 | 0.9878 | 0.9878 | nan | 0.9878 | 0.0 | 0.9878 |
|
78 |
+
| 0.023 | 25.88 | 440 | 0.0264 | 0.4935 | 0.9869 | 0.9869 | nan | 0.9869 | 0.0 | 0.9869 |
|
79 |
+
| 0.0183 | 27.06 | 460 | 0.0257 | 0.4960 | 0.9919 | 0.9919 | nan | 0.9919 | 0.0 | 0.9919 |
|
80 |
+
| 0.024 | 28.24 | 480 | 0.0256 | 0.4950 | 0.9900 | 0.9900 | nan | 0.9900 | 0.0 | 0.9900 |
|
81 |
+
| 0.0145 | 29.41 | 500 | 0.0246 | 0.4956 | 0.9911 | 0.9911 | nan | 0.9911 | 0.0 | 0.9911 |
|
82 |
+
| 0.0158 | 30.59 | 520 | 0.0251 | 0.4947 | 0.9894 | 0.9894 | nan | 0.9894 | 0.0 | 0.9894 |
|
83 |
+
| 0.017 | 31.76 | 540 | 0.0247 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 |
|
84 |
+
| 0.018 | 32.94 | 560 | 0.0237 | 0.4965 | 0.9930 | 0.9930 | nan | 0.9930 | 0.0 | 0.9930 |
|
85 |
+
| 0.0161 | 34.12 | 580 | 0.0238 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 |
|
86 |
+
| 0.0191 | 35.29 | 600 | 0.0241 | 0.4950 | 0.9901 | 0.9901 | nan | 0.9901 | 0.0 | 0.9901 |
|
87 |
+
| 0.0133 | 36.47 | 620 | 0.0240 | 0.4956 | 0.9912 | 0.9912 | nan | 0.9912 | 0.0 | 0.9912 |
|
88 |
+
| 0.0118 | 37.65 | 640 | 0.0244 | 0.4949 | 0.9897 | 0.9897 | nan | 0.9897 | 0.0 | 0.9897 |
|
89 |
+
| 0.0133 | 38.82 | 660 | 0.0229 | 0.4961 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 | 0.9922 |
|
90 |
+
| 0.0199 | 40.0 | 680 | 0.0236 | 0.4958 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
|
91 |
+
| 0.0167 | 41.18 | 700 | 0.0234 | 0.4961 | 0.9922 | 0.9922 | nan | 0.9922 | 0.0 | 0.9922 |
|
92 |
+
| 0.0119 | 42.35 | 720 | 0.0234 | 0.4957 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
|
93 |
+
| 0.0154 | 43.53 | 740 | 0.0243 | 0.4950 | 0.9901 | 0.9901 | nan | 0.9901 | 0.0 | 0.9901 |
|
94 |
+
| 0.0126 | 44.71 | 760 | 0.0242 | 0.4949 | 0.9898 | 0.9898 | nan | 0.9898 | 0.0 | 0.9898 |
|
95 |
+
| 0.0128 | 45.88 | 780 | 0.0243 | 0.4955 | 0.9911 | 0.9911 | nan | 0.9911 | 0.0 | 0.9911 |
|
96 |
+
| 0.0116 | 47.06 | 800 | 0.0239 | 0.4953 | 0.9907 | 0.9907 | nan | 0.9907 | 0.0 | 0.9907 |
|
97 |
+
| 0.0121 | 48.24 | 820 | 0.0239 | 0.4954 | 0.9909 | 0.9909 | nan | 0.9909 | 0.0 | 0.9909 |
|
98 |
+
| 0.0165 | 49.41 | 840 | 0.0236 | 0.4952 | 0.9904 | 0.9904 | nan | 0.9904 | 0.0 | 0.9904 |
|
99 |
|
100 |
|
101 |
### Framework versions
|