HorcruxNo13
commited on
Commit
•
95f02f1
1
Parent(s):
91be1c9
update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: segformer-b0-finetuned-segments-toolwear
|
@@ -12,18 +14,18 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# segformer-b0-finetuned-segments-toolwear
|
14 |
|
15 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
-
- Accuracy Tool: 0.
|
23 |
-
- Accuracy Wear: 0.
|
24 |
- Iou Unlabeled: 0.0
|
25 |
-
- Iou Tool: 0.
|
26 |
-
- Iou Wear: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -54,33 +56,33 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: segformer-b0-finetuned-segments-toolwear
|
|
|
14 |
|
15 |
# segformer-b0-finetuned-segments-toolwear
|
16 |
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_edges dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.7517
|
20 |
+
- Mean Iou: 0.3530
|
21 |
+
- Mean Accuracy: 0.7066
|
22 |
+
- Overall Accuracy: 0.7444
|
23 |
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Tool: 0.6653
|
25 |
+
- Accuracy Wear: 0.7480
|
26 |
- Iou Unlabeled: 0.0
|
27 |
+
- Iou Tool: 0.3188
|
28 |
+
- Iou Wear: 0.7403
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
|
59 |
+
| 0.8264 | 1.82 | 20 | 0.9929 | 0.3016 | 0.5119 | 0.6940 | nan | 0.3130 | 0.7109 | 0.0 | 0.2149 | 0.6899 |
|
60 |
+
| 0.566 | 3.64 | 40 | 0.8390 | 0.3172 | 0.6658 | 0.6561 | nan | 0.6765 | 0.6552 | 0.0 | 0.3052 | 0.6466 |
|
61 |
+
| 0.5515 | 5.45 | 60 | 0.7996 | 0.3015 | 0.7085 | 0.5831 | nan | 0.8455 | 0.5715 | 0.0 | 0.3365 | 0.5680 |
|
62 |
+
| 0.496 | 7.27 | 80 | 0.7495 | 0.3370 | 0.7783 | 0.6771 | nan | 0.8889 | 0.6676 | 0.0 | 0.3465 | 0.6645 |
|
63 |
+
| 0.4945 | 9.09 | 100 | 0.7214 | 0.3106 | 0.6966 | 0.6150 | nan | 0.7858 | 0.6074 | 0.0 | 0.3294 | 0.6025 |
|
64 |
+
| 0.4392 | 10.91 | 120 | 0.7105 | 0.3012 | 0.7519 | 0.5990 | nan | 0.9191 | 0.5848 | 0.0 | 0.3198 | 0.5839 |
|
65 |
+
| 0.3211 | 12.73 | 140 | 0.7570 | 0.3470 | 0.7008 | 0.7352 | nan | 0.6632 | 0.7384 | 0.0 | 0.3116 | 0.7292 |
|
66 |
+
| 0.2289 | 14.55 | 160 | 0.9477 | 0.3748 | 0.7214 | 0.7566 | nan | 0.6830 | 0.7598 | 0.0 | 0.3718 | 0.7527 |
|
67 |
+
| 0.4674 | 16.36 | 180 | 0.8172 | 0.3637 | 0.7442 | 0.7533 | nan | 0.7344 | 0.7541 | 0.0 | 0.3437 | 0.7476 |
|
68 |
+
| 0.3226 | 18.18 | 200 | 0.8199 | 0.3238 | 0.7286 | 0.6845 | nan | 0.7769 | 0.6804 | 0.0 | 0.2939 | 0.6777 |
|
69 |
+
| 0.1706 | 20.0 | 220 | 0.7336 | 0.3410 | 0.6894 | 0.7096 | nan | 0.6673 | 0.7115 | 0.0 | 0.3185 | 0.7044 |
|
70 |
+
| 0.2786 | 21.82 | 240 | 0.9254 | 0.3662 | 0.7577 | 0.7864 | nan | 0.7264 | 0.7891 | 0.0 | 0.3164 | 0.7821 |
|
71 |
+
| 0.1685 | 23.64 | 260 | 0.8291 | 0.3435 | 0.7685 | 0.7294 | nan | 0.8113 | 0.7258 | 0.0 | 0.3082 | 0.7224 |
|
72 |
+
| 0.1649 | 25.45 | 280 | 0.7200 | 0.3303 | 0.7133 | 0.6593 | nan | 0.7723 | 0.6543 | 0.0 | 0.3394 | 0.6516 |
|
73 |
+
| 0.1481 | 27.27 | 300 | 0.8155 | 0.3531 | 0.7558 | 0.7434 | nan | 0.7695 | 0.7422 | 0.0 | 0.3206 | 0.7385 |
|
74 |
+
| 0.1476 | 29.09 | 320 | 0.7374 | 0.3455 | 0.6734 | 0.7252 | nan | 0.6169 | 0.7300 | 0.0 | 0.3153 | 0.7211 |
|
75 |
+
| 0.2284 | 30.91 | 340 | 0.7254 | 0.3265 | 0.6989 | 0.6766 | nan | 0.7233 | 0.6745 | 0.0 | 0.3099 | 0.6695 |
|
76 |
+
| 0.1212 | 32.73 | 360 | 0.8022 | 0.3591 | 0.7252 | 0.7662 | nan | 0.6804 | 0.7700 | 0.0 | 0.3153 | 0.7620 |
|
77 |
+
| 0.1284 | 34.55 | 380 | 0.7345 | 0.3449 | 0.7044 | 0.7331 | nan | 0.6731 | 0.7357 | 0.0 | 0.3062 | 0.7284 |
|
78 |
+
| 0.1685 | 36.36 | 400 | 0.7581 | 0.3275 | 0.7357 | 0.6991 | nan | 0.7757 | 0.6957 | 0.0 | 0.2910 | 0.6915 |
|
79 |
+
| 0.1018 | 38.18 | 420 | 0.7303 | 0.3401 | 0.6575 | 0.7173 | nan | 0.5921 | 0.7228 | 0.0 | 0.3069 | 0.7133 |
|
80 |
+
| 0.1405 | 40.0 | 440 | 0.7375 | 0.3555 | 0.7301 | 0.7475 | nan | 0.7111 | 0.7491 | 0.0 | 0.3234 | 0.7431 |
|
81 |
+
| 0.08 | 41.82 | 460 | 0.7449 | 0.3561 | 0.7047 | 0.7457 | nan | 0.6598 | 0.7495 | 0.0 | 0.3265 | 0.7417 |
|
82 |
+
| 0.1311 | 43.64 | 480 | 0.7680 | 0.3552 | 0.7205 | 0.7444 | nan | 0.6945 | 0.7466 | 0.0 | 0.3257 | 0.7398 |
|
83 |
+
| 0.1235 | 45.45 | 500 | 0.7589 | 0.3523 | 0.7117 | 0.7398 | nan | 0.6811 | 0.7424 | 0.0 | 0.3218 | 0.7352 |
|
84 |
+
| 0.1169 | 47.27 | 520 | 0.7676 | 0.3535 | 0.6952 | 0.7529 | nan | 0.6320 | 0.7583 | 0.0 | 0.3110 | 0.7494 |
|
85 |
+
| 0.14 | 49.09 | 540 | 0.7517 | 0.3530 | 0.7066 | 0.7444 | nan | 0.6653 | 0.7480 | 0.0 | 0.3188 | 0.7403 |
|
86 |
|
87 |
|
88 |
### Framework versions
|