HorcruxNo13
commited on
Commit
·
796d164
1
Parent(s):
0cf57fc
update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: segformer-b0-finetuned-segments-toolwear
|
@@ -12,16 +14,18 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# segformer-b0-finetuned-segments-toolwear
|
14 |
|
15 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
-
- Accuracy Tool:
|
|
|
23 |
- Iou Unlabeled: 0.0
|
24 |
-
- Iou Tool:
|
|
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -50,50 +54,50 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Iou Unlabeled | Iou Tool |
|
54 |
-
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
|
98 |
|
99 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: segformer-b0-finetuned-segments-toolwear
|
|
|
14 |
|
15 |
# segformer-b0-finetuned-segments-toolwear
|
16 |
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_complete_wear dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0387
|
20 |
+
- Mean Iou: 0.4153
|
21 |
+
- Mean Accuracy: 0.8306
|
22 |
+
- Overall Accuracy: 0.8306
|
23 |
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Tool: nan
|
25 |
+
- Accuracy Wear: 0.8306
|
26 |
- Iou Unlabeled: 0.0
|
27 |
+
- Iou Tool: nan
|
28 |
+
- Iou Wear: 0.8306
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
|
59 |
+
| 0.8874 | 1.18 | 20 | 0.8947 | 0.4560 | 0.9119 | 0.9119 | nan | nan | 0.9119 | 0.0 | nan | 0.9119 |
|
60 |
+
| 0.5792 | 2.35 | 40 | 0.5701 | 0.2551 | 0.7653 | 0.7653 | nan | nan | 0.7653 | 0.0 | 0.0 | 0.7653 |
|
61 |
+
| 0.5031 | 3.53 | 60 | 0.4364 | 0.4652 | 0.9305 | 0.9305 | nan | nan | 0.9305 | 0.0 | nan | 0.9305 |
|
62 |
+
| 0.4025 | 4.71 | 80 | 0.4218 | 0.4529 | 0.9058 | 0.9058 | nan | nan | 0.9058 | 0.0 | nan | 0.9058 |
|
63 |
+
| 0.3212 | 5.88 | 100 | 0.3115 | 0.4447 | 0.8894 | 0.8894 | nan | nan | 0.8894 | 0.0 | nan | 0.8894 |
|
64 |
+
| 0.2797 | 7.06 | 120 | 0.2646 | 0.3291 | 0.6582 | 0.6582 | nan | nan | 0.6582 | 0.0 | nan | 0.6582 |
|
65 |
+
| 0.2143 | 8.24 | 140 | 0.2223 | 0.4177 | 0.8354 | 0.8354 | nan | nan | 0.8354 | 0.0 | nan | 0.8354 |
|
66 |
+
| 0.1951 | 9.41 | 160 | 0.1815 | 0.4313 | 0.8625 | 0.8625 | nan | nan | 0.8625 | 0.0 | nan | 0.8625 |
|
67 |
+
| 0.1475 | 10.59 | 180 | 0.1571 | 0.4014 | 0.8029 | 0.8029 | nan | nan | 0.8029 | 0.0 | nan | 0.8029 |
|
68 |
+
| 0.1523 | 11.76 | 200 | 0.1386 | 0.4242 | 0.8485 | 0.8485 | nan | nan | 0.8485 | 0.0 | nan | 0.8485 |
|
69 |
+
| 0.1324 | 12.94 | 220 | 0.1127 | 0.4429 | 0.8858 | 0.8858 | nan | nan | 0.8858 | 0.0 | nan | 0.8858 |
|
70 |
+
| 0.0977 | 14.12 | 240 | 0.1064 | 0.4458 | 0.8916 | 0.8916 | nan | nan | 0.8916 | 0.0 | nan | 0.8916 |
|
71 |
+
| 0.0858 | 15.29 | 260 | 0.0915 | 0.4561 | 0.9122 | 0.9122 | nan | nan | 0.9122 | 0.0 | nan | 0.9122 |
|
72 |
+
| 0.0782 | 16.47 | 280 | 0.0934 | 0.4611 | 0.9223 | 0.9223 | nan | nan | 0.9223 | 0.0 | nan | 0.9223 |
|
73 |
+
| 0.0763 | 17.65 | 300 | 0.0757 | 0.4542 | 0.9084 | 0.9084 | nan | nan | 0.9084 | 0.0 | nan | 0.9084 |
|
74 |
+
| 0.0665 | 18.82 | 320 | 0.0718 | 0.4259 | 0.8518 | 0.8518 | nan | nan | 0.8518 | 0.0 | nan | 0.8518 |
|
75 |
+
| 0.0658 | 20.0 | 340 | 0.0636 | 0.3842 | 0.7685 | 0.7685 | nan | nan | 0.7685 | 0.0 | nan | 0.7685 |
|
76 |
+
| 0.0672 | 21.18 | 360 | 0.0590 | 0.4212 | 0.8425 | 0.8425 | nan | nan | 0.8425 | 0.0 | nan | 0.8425 |
|
77 |
+
| 0.05 | 22.35 | 380 | 0.0586 | 0.4502 | 0.9005 | 0.9005 | nan | nan | 0.9005 | 0.0 | nan | 0.9005 |
|
78 |
+
| 0.0525 | 23.53 | 400 | 0.0546 | 0.3913 | 0.7827 | 0.7827 | nan | nan | 0.7827 | 0.0 | nan | 0.7827 |
|
79 |
+
| 0.0451 | 24.71 | 420 | 0.0528 | 0.4383 | 0.8767 | 0.8767 | nan | nan | 0.8767 | 0.0 | nan | 0.8767 |
|
80 |
+
| 0.0407 | 25.88 | 440 | 0.0494 | 0.4337 | 0.8675 | 0.8675 | nan | nan | 0.8675 | 0.0 | nan | 0.8675 |
|
81 |
+
| 0.0462 | 27.06 | 460 | 0.0510 | 0.3397 | 0.6795 | 0.6795 | nan | nan | 0.6795 | 0.0 | nan | 0.6795 |
|
82 |
+
| 0.0376 | 28.24 | 480 | 0.0451 | 0.4271 | 0.8541 | 0.8541 | nan | nan | 0.8541 | 0.0 | nan | 0.8541 |
|
83 |
+
| 0.0349 | 29.41 | 500 | 0.0456 | 0.4173 | 0.8346 | 0.8346 | nan | nan | 0.8346 | 0.0 | nan | 0.8346 |
|
84 |
+
| 0.0406 | 30.59 | 520 | 0.0449 | 0.3863 | 0.7726 | 0.7726 | nan | nan | 0.7726 | 0.0 | nan | 0.7726 |
|
85 |
+
| 0.0333 | 31.76 | 540 | 0.0438 | 0.4361 | 0.8721 | 0.8721 | nan | nan | 0.8721 | 0.0 | nan | 0.8721 |
|
86 |
+
| 0.0331 | 32.94 | 560 | 0.0480 | 0.3417 | 0.6834 | 0.6834 | nan | nan | 0.6834 | 0.0 | nan | 0.6834 |
|
87 |
+
| 0.0756 | 34.12 | 580 | 0.0420 | 0.4362 | 0.8723 | 0.8723 | nan | nan | 0.8723 | 0.0 | nan | 0.8723 |
|
88 |
+
| 0.0295 | 35.29 | 600 | 0.0437 | 0.3674 | 0.7349 | 0.7349 | nan | nan | 0.7349 | 0.0 | nan | 0.7349 |
|
89 |
+
| 0.0325 | 36.47 | 620 | 0.0409 | 0.4087 | 0.8174 | 0.8174 | nan | nan | 0.8174 | 0.0 | nan | 0.8174 |
|
90 |
+
| 0.0299 | 37.65 | 640 | 0.0405 | 0.4150 | 0.8299 | 0.8299 | nan | nan | 0.8299 | 0.0 | nan | 0.8299 |
|
91 |
+
| 0.0384 | 38.82 | 660 | 0.0416 | 0.3690 | 0.7380 | 0.7380 | nan | nan | 0.7380 | 0.0 | nan | 0.7380 |
|
92 |
+
| 0.0269 | 40.0 | 680 | 0.0393 | 0.4356 | 0.8713 | 0.8713 | nan | nan | 0.8713 | 0.0 | nan | 0.8713 |
|
93 |
+
| 0.025 | 41.18 | 700 | 0.0389 | 0.3976 | 0.7952 | 0.7952 | nan | nan | 0.7952 | 0.0 | nan | 0.7952 |
|
94 |
+
| 0.0256 | 42.35 | 720 | 0.0392 | 0.3729 | 0.7459 | 0.7459 | nan | nan | 0.7459 | 0.0 | nan | 0.7459 |
|
95 |
+
| 0.0303 | 43.53 | 740 | 0.0400 | 0.3869 | 0.7738 | 0.7738 | nan | nan | 0.7738 | 0.0 | nan | 0.7738 |
|
96 |
+
| 0.0244 | 44.71 | 760 | 0.0389 | 0.4022 | 0.8044 | 0.8044 | nan | nan | 0.8044 | 0.0 | nan | 0.8044 |
|
97 |
+
| 0.03 | 45.88 | 780 | 0.0387 | 0.4003 | 0.8006 | 0.8006 | nan | nan | 0.8006 | 0.0 | nan | 0.8006 |
|
98 |
+
| 0.0238 | 47.06 | 800 | 0.0384 | 0.4073 | 0.8147 | 0.8147 | nan | nan | 0.8147 | 0.0 | nan | 0.8147 |
|
99 |
+
| 0.0278 | 48.24 | 820 | 0.0394 | 0.4151 | 0.8302 | 0.8302 | nan | nan | 0.8302 | 0.0 | nan | 0.8302 |
|
100 |
+
| 0.0281 | 49.41 | 840 | 0.0387 | 0.4153 | 0.8306 | 0.8306 | nan | nan | 0.8306 | 0.0 | nan | 0.8306 |
|
101 |
|
102 |
|
103 |
### Framework versions
|