HorcruxNo13
commited on
Commit
•
528b898
1
Parent(s):
2e2a664
update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: segformer-b0-finetuned-segments-toolwear
|
@@ -12,18 +14,18 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# segformer-b0-finetuned-segments-toolwear
|
14 |
|
15 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
- Accuracy Tool: nan
|
23 |
-
- Accuracy Wear: 0.
|
24 |
- Iou Unlabeled: 0.0
|
25 |
- Iou Tool: nan
|
26 |
-
- Iou Wear: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -54,19 +56,19 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
|
71 |
|
72 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: segformer-b0-finetuned-segments-toolwear
|
|
|
14 |
|
15 |
# segformer-b0-finetuned-segments-toolwear
|
16 |
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_segmentsai dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2168
|
20 |
+
- Mean Iou: 0.3007
|
21 |
+
- Mean Accuracy: 0.6014
|
22 |
+
- Overall Accuracy: 0.6014
|
23 |
- Accuracy Unlabeled: nan
|
24 |
- Accuracy Tool: nan
|
25 |
+
- Accuracy Wear: 0.6014
|
26 |
- Iou Unlabeled: 0.0
|
27 |
- Iou Tool: nan
|
28 |
+
- Iou Wear: 0.6014
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
56 |
|
57 |
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|
58 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
|
59 |
+
| 0.9147 | 1.82 | 20 | 0.9308 | 0.3010 | 0.9029 | 0.9029 | nan | nan | 0.9029 | 0.0 | 0.0 | 0.9029 |
|
60 |
+
| 0.6788 | 3.64 | 40 | 0.6521 | 0.2589 | 0.7768 | 0.7768 | nan | nan | 0.7768 | 0.0 | 0.0 | 0.7768 |
|
61 |
+
| 0.4559 | 5.45 | 60 | 0.4600 | 0.2663 | 0.7989 | 0.7989 | nan | nan | 0.7989 | 0.0 | 0.0 | 0.7989 |
|
62 |
+
| 0.3799 | 7.27 | 80 | 0.3767 | 0.2061 | 0.6182 | 0.6182 | nan | nan | 0.6182 | 0.0 | 0.0 | 0.6182 |
|
63 |
+
| 0.4438 | 9.09 | 100 | 0.3259 | 0.3479 | 0.6958 | 0.6958 | nan | nan | 0.6958 | 0.0 | nan | 0.6958 |
|
64 |
+
| 0.3534 | 10.91 | 120 | 0.3008 | 0.3057 | 0.6114 | 0.6114 | nan | nan | 0.6114 | 0.0 | nan | 0.6114 |
|
65 |
+
| 0.3332 | 12.73 | 140 | 0.2805 | 0.3631 | 0.7261 | 0.7261 | nan | nan | 0.7261 | 0.0 | nan | 0.7261 |
|
66 |
+
| 0.2543 | 14.55 | 160 | 0.2659 | 0.2927 | 0.5853 | 0.5853 | nan | nan | 0.5853 | 0.0 | nan | 0.5853 |
|
67 |
+
| 0.2746 | 16.36 | 180 | 0.2324 | 0.2724 | 0.5449 | 0.5449 | nan | nan | 0.5449 | 0.0 | nan | 0.5449 |
|
68 |
+
| 0.2532 | 18.18 | 200 | 0.2409 | 0.3597 | 0.7194 | 0.7194 | nan | nan | 0.7194 | 0.0 | nan | 0.7194 |
|
69 |
+
| 0.2353 | 20.0 | 220 | 0.2369 | 0.3070 | 0.6139 | 0.6139 | nan | nan | 0.6139 | 0.0 | nan | 0.6139 |
|
70 |
+
| 0.2192 | 21.82 | 240 | 0.2210 | 0.3041 | 0.6083 | 0.6083 | nan | nan | 0.6083 | 0.0 | nan | 0.6083 |
|
71 |
+
| 0.2469 | 23.64 | 260 | 0.2168 | 0.3007 | 0.6014 | 0.6014 | nan | nan | 0.6014 | 0.0 | nan | 0.6014 |
|
72 |
|
73 |
|
74 |
### Framework versions
|