HorcruxNo13
commited on
Commit
·
4c47cec
1
Parent(s):
5c3ead2
update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: segformer-b0-finetuned-segments-toolwear
|
@@ -12,16 +14,18 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# segformer-b0-finetuned-segments-toolwear
|
14 |
|
15 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
-
- Accuracy Tool:
|
|
|
23 |
- Iou Unlabeled: 0.0
|
24 |
-
- Iou Tool:
|
|
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -50,35 +54,35 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Iou Unlabeled | Iou Tool |
|
54 |
-
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
|
83 |
|
84 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: segformer-b0-finetuned-segments-toolwear
|
|
|
14 |
|
15 |
# segformer-b0-finetuned-segments-toolwear
|
16 |
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_segmentsai dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1291
|
20 |
+
- Mean Iou: 0.4322
|
21 |
+
- Mean Accuracy: 0.8644
|
22 |
+
- Overall Accuracy: 0.8644
|
23 |
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Tool: nan
|
25 |
+
- Accuracy Wear: 0.8644
|
26 |
- Iou Unlabeled: 0.0
|
27 |
+
- Iou Tool: nan
|
28 |
+
- Iou Wear: 0.8644
|
29 |
|
30 |
## Model description
|
31 |
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
|
59 |
+
| 0.8371 | 1.82 | 20 | 0.9482 | 0.3285 | 0.9854 | 0.9854 | nan | nan | 0.9854 | 0.0 | 0.0 | 0.9854 |
|
60 |
+
| 0.6335 | 3.64 | 40 | 0.7489 | 0.4996 | 0.9992 | 0.9992 | nan | nan | 0.9992 | 0.0 | nan | 0.9992 |
|
61 |
+
| 0.5053 | 5.45 | 60 | 0.5400 | 0.4975 | 0.9949 | 0.9949 | nan | nan | 0.9949 | 0.0 | nan | 0.9949 |
|
62 |
+
| 0.3924 | 7.27 | 80 | 0.4544 | 0.4905 | 0.9810 | 0.9810 | nan | nan | 0.9810 | 0.0 | nan | 0.9810 |
|
63 |
+
| 0.3419 | 9.09 | 100 | 0.3840 | 0.4727 | 0.9455 | 0.9455 | nan | nan | 0.9455 | 0.0 | nan | 0.9455 |
|
64 |
+
| 0.3379 | 10.91 | 120 | 0.3407 | 0.4648 | 0.9296 | 0.9296 | nan | nan | 0.9296 | 0.0 | nan | 0.9296 |
|
65 |
+
| 0.2639 | 12.73 | 140 | 0.3495 | 0.4780 | 0.9559 | 0.9559 | nan | nan | 0.9559 | 0.0 | nan | 0.9559 |
|
66 |
+
| 0.224 | 14.55 | 160 | 0.2815 | 0.4541 | 0.9081 | 0.9081 | nan | nan | 0.9081 | 0.0 | nan | 0.9081 |
|
67 |
+
| 0.1725 | 16.36 | 180 | 0.2896 | 0.4599 | 0.9199 | 0.9199 | nan | nan | 0.9199 | 0.0 | nan | 0.9199 |
|
68 |
+
| 0.1623 | 18.18 | 200 | 0.2540 | 0.4679 | 0.9359 | 0.9359 | nan | nan | 0.9359 | 0.0 | nan | 0.9359 |
|
69 |
+
| 0.1724 | 20.0 | 220 | 0.2567 | 0.4702 | 0.9404 | 0.9404 | nan | nan | 0.9404 | 0.0 | nan | 0.9404 |
|
70 |
+
| 0.1503 | 21.82 | 240 | 0.1967 | 0.4459 | 0.8919 | 0.8919 | nan | nan | 0.8919 | 0.0 | nan | 0.8919 |
|
71 |
+
| 0.1189 | 23.64 | 260 | 0.2153 | 0.4617 | 0.9234 | 0.9234 | nan | nan | 0.9234 | 0.0 | nan | 0.9234 |
|
72 |
+
| 0.1007 | 25.45 | 280 | 0.1695 | 0.4324 | 0.8648 | 0.8648 | nan | nan | 0.8648 | 0.0 | nan | 0.8648 |
|
73 |
+
| 0.0921 | 27.27 | 300 | 0.1540 | 0.4346 | 0.8691 | 0.8691 | nan | nan | 0.8691 | 0.0 | nan | 0.8691 |
|
74 |
+
| 0.0897 | 29.09 | 320 | 0.1657 | 0.4538 | 0.9077 | 0.9077 | nan | nan | 0.9077 | 0.0 | nan | 0.9077 |
|
75 |
+
| 0.0814 | 30.91 | 340 | 0.1519 | 0.4374 | 0.8749 | 0.8749 | nan | nan | 0.8749 | 0.0 | nan | 0.8749 |
|
76 |
+
| 0.0729 | 32.73 | 360 | 0.1444 | 0.4430 | 0.8861 | 0.8861 | nan | nan | 0.8861 | 0.0 | nan | 0.8861 |
|
77 |
+
| 0.0892 | 34.55 | 380 | 0.1283 | 0.4106 | 0.8213 | 0.8213 | nan | nan | 0.8213 | 0.0 | nan | 0.8213 |
|
78 |
+
| 0.07 | 36.36 | 400 | 0.1442 | 0.4374 | 0.8748 | 0.8748 | nan | nan | 0.8748 | 0.0 | nan | 0.8748 |
|
79 |
+
| 0.0619 | 38.18 | 420 | 0.1391 | 0.4296 | 0.8592 | 0.8592 | nan | nan | 0.8592 | 0.0 | nan | 0.8592 |
|
80 |
+
| 0.0563 | 40.0 | 440 | 0.1283 | 0.4402 | 0.8804 | 0.8804 | nan | nan | 0.8804 | 0.0 | nan | 0.8804 |
|
81 |
+
| 0.0582 | 41.82 | 460 | 0.1275 | 0.4297 | 0.8595 | 0.8595 | nan | nan | 0.8595 | 0.0 | nan | 0.8595 |
|
82 |
+
| 0.0575 | 43.64 | 480 | 0.1341 | 0.4362 | 0.8724 | 0.8724 | nan | nan | 0.8724 | 0.0 | nan | 0.8724 |
|
83 |
+
| 0.068 | 45.45 | 500 | 0.1132 | 0.4181 | 0.8362 | 0.8362 | nan | nan | 0.8362 | 0.0 | nan | 0.8362 |
|
84 |
+
| 0.0595 | 47.27 | 520 | 0.1285 | 0.4316 | 0.8632 | 0.8632 | nan | nan | 0.8632 | 0.0 | nan | 0.8632 |
|
85 |
+
| 0.0558 | 49.09 | 540 | 0.1291 | 0.4322 | 0.8644 | 0.8644 | nan | nan | 0.8644 | 0.0 | nan | 0.8644 |
|
86 |
|
87 |
|
88 |
### Framework versions
|