HorcruxNo13 commited on
Commit
4c47cec
·
1 Parent(s): 5c3ead2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -36
README.md CHANGED
@@ -1,6 +1,8 @@
1
  ---
2
  license: other
3
  tags:
 
 
4
  - generated_from_trainer
5
  model-index:
6
  - name: segformer-b0-finetuned-segments-toolwear
@@ -12,16 +14,18 @@ should probably proofread and complete it, then remove this comment. -->
12
 
13
  # segformer-b0-finetuned-segments-toolwear
14
 
15
- This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on an unknown dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.0332
18
- - Mean Iou: 0.4969
19
- - Mean Accuracy: 0.9938
20
- - Overall Accuracy: 0.9938
21
  - Accuracy Unlabeled: nan
22
- - Accuracy Tool: 0.9938
 
23
  - Iou Unlabeled: 0.0
24
- - Iou Tool: 0.9938
 
25
 
26
  ## Model description
27
 
@@ -50,35 +54,35 @@ The following hyperparameters were used during training:
50
 
51
  ### Training results
52
 
53
- | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Iou Unlabeled | Iou Tool |
54
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
55
- | 0.1957 | 1.82 | 20 | 0.3708 | 0.4995 | 0.9991 | 0.9991 | nan | 0.9991 | 0.0 | 0.9991 |
56
- | 0.1896 | 3.64 | 40 | 0.1768 | 0.4985 | 0.9970 | 0.9970 | nan | 0.9970 | 0.0 | 0.9970 |
57
- | 0.1022 | 5.45 | 60 | 0.0996 | 0.4966 | 0.9933 | 0.9933 | nan | 0.9933 | 0.0 | 0.9933 |
58
- | 0.0855 | 7.27 | 80 | 0.0863 | 0.4767 | 0.9535 | 0.9535 | nan | 0.9535 | 0.0 | 0.9535 |
59
- | 0.1223 | 9.09 | 100 | 0.0677 | 0.4964 | 0.9927 | 0.9927 | nan | 0.9927 | 0.0 | 0.9927 |
60
- | 0.0791 | 10.91 | 120 | 0.0583 | 0.4948 | 0.9896 | 0.9896 | nan | 0.9896 | 0.0 | 0.9896 |
61
- | 0.0521 | 12.73 | 140 | 0.0500 | 0.4938 | 0.9876 | 0.9876 | nan | 0.9876 | 0.0 | 0.9876 |
62
- | 0.0397 | 14.55 | 160 | 0.0443 | 0.4958 | 0.9916 | 0.9916 | nan | 0.9916 | 0.0 | 0.9916 |
63
- | 0.0283 | 16.36 | 180 | 0.0594 | 0.4972 | 0.9943 | 0.9943 | nan | 0.9943 | 0.0 | 0.9943 |
64
- | 0.0378 | 18.18 | 200 | 0.0485 | 0.4987 | 0.9974 | 0.9974 | nan | 0.9974 | 0.0 | 0.9974 |
65
- | 0.0347 | 20.0 | 220 | 0.0382 | 0.4971 | 0.9941 | 0.9941 | nan | 0.9941 | 0.0 | 0.9941 |
66
- | 0.0245 | 21.82 | 240 | 0.0346 | 0.4966 | 0.9932 | 0.9932 | nan | 0.9932 | 0.0 | 0.9932 |
67
- | 0.0425 | 23.64 | 260 | 0.0393 | 0.4961 | 0.9921 | 0.9921 | nan | 0.9921 | 0.0 | 0.9921 |
68
- | 0.0293 | 25.45 | 280 | 0.0336 | 0.4973 | 0.9946 | 0.9946 | nan | 0.9946 | 0.0 | 0.9946 |
69
- | 0.0247 | 27.27 | 300 | 0.0368 | 0.4972 | 0.9944 | 0.9944 | nan | 0.9944 | 0.0 | 0.9944 |
70
- | 0.0287 | 29.09 | 320 | 0.0317 | 0.4958 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
71
- | 0.0254 | 30.91 | 340 | 0.0408 | 0.4966 | 0.9932 | 0.9932 | nan | 0.9932 | 0.0 | 0.9932 |
72
- | 0.0347 | 32.73 | 360 | 0.0291 | 0.4965 | 0.9930 | 0.9930 | nan | 0.9930 | 0.0 | 0.9930 |
73
- | 0.0174 | 34.55 | 380 | 0.0361 | 0.4978 | 0.9955 | 0.9955 | nan | 0.9955 | 0.0 | 0.9955 |
74
- | 0.0191 | 36.36 | 400 | 0.0417 | 0.4972 | 0.9944 | 0.9944 | nan | 0.9944 | 0.0 | 0.9944 |
75
- | 0.0234 | 38.18 | 420 | 0.0373 | 0.4974 | 0.9947 | 0.9947 | nan | 0.9947 | 0.0 | 0.9947 |
76
- | 0.0306 | 40.0 | 440 | 0.0370 | 0.4969 | 0.9938 | 0.9938 | nan | 0.9938 | 0.0 | 0.9938 |
77
- | 0.0178 | 41.82 | 460 | 0.0407 | 0.4973 | 0.9946 | 0.9946 | nan | 0.9946 | 0.0 | 0.9946 |
78
- | 0.0152 | 43.64 | 480 | 0.0323 | 0.4968 | 0.9935 | 0.9935 | nan | 0.9935 | 0.0 | 0.9935 |
79
- | 0.0181 | 45.45 | 500 | 0.0346 | 0.4974 | 0.9947 | 0.9947 | nan | 0.9947 | 0.0 | 0.9947 |
80
- | 0.0155 | 47.27 | 520 | 0.0338 | 0.4971 | 0.9942 | 0.9942 | nan | 0.9942 | 0.0 | 0.9942 |
81
- | 0.0223 | 49.09 | 540 | 0.0332 | 0.4969 | 0.9938 | 0.9938 | nan | 0.9938 | 0.0 | 0.9938 |
82
 
83
 
84
  ### Framework versions
 
1
  ---
2
  license: other
3
  tags:
4
+ - vision
5
+ - image-segmentation
6
  - generated_from_trainer
7
  model-index:
8
  - name: segformer-b0-finetuned-segments-toolwear
 
14
 
15
  # segformer-b0-finetuned-segments-toolwear
16
 
17
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_segmentsai dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.1291
20
+ - Mean Iou: 0.4322
21
+ - Mean Accuracy: 0.8644
22
+ - Overall Accuracy: 0.8644
23
  - Accuracy Unlabeled: nan
24
+ - Accuracy Tool: nan
25
+ - Accuracy Wear: 0.8644
26
  - Iou Unlabeled: 0.0
27
+ - Iou Tool: nan
28
+ - Iou Wear: 0.8644
29
 
30
  ## Model description
31
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Accuracy Wear | Iou Unlabeled | Iou Tool | Iou Wear |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:-------------:|:--------:|:--------:|
59
+ | 0.8371 | 1.82 | 20 | 0.9482 | 0.3285 | 0.9854 | 0.9854 | nan | nan | 0.9854 | 0.0 | 0.0 | 0.9854 |
60
+ | 0.6335 | 3.64 | 40 | 0.7489 | 0.4996 | 0.9992 | 0.9992 | nan | nan | 0.9992 | 0.0 | nan | 0.9992 |
61
+ | 0.5053 | 5.45 | 60 | 0.5400 | 0.4975 | 0.9949 | 0.9949 | nan | nan | 0.9949 | 0.0 | nan | 0.9949 |
62
+ | 0.3924 | 7.27 | 80 | 0.4544 | 0.4905 | 0.9810 | 0.9810 | nan | nan | 0.9810 | 0.0 | nan | 0.9810 |
63
+ | 0.3419 | 9.09 | 100 | 0.3840 | 0.4727 | 0.9455 | 0.9455 | nan | nan | 0.9455 | 0.0 | nan | 0.9455 |
64
+ | 0.3379 | 10.91 | 120 | 0.3407 | 0.4648 | 0.9296 | 0.9296 | nan | nan | 0.9296 | 0.0 | nan | 0.9296 |
65
+ | 0.2639 | 12.73 | 140 | 0.3495 | 0.4780 | 0.9559 | 0.9559 | nan | nan | 0.9559 | 0.0 | nan | 0.9559 |
66
+ | 0.224 | 14.55 | 160 | 0.2815 | 0.4541 | 0.9081 | 0.9081 | nan | nan | 0.9081 | 0.0 | nan | 0.9081 |
67
+ | 0.1725 | 16.36 | 180 | 0.2896 | 0.4599 | 0.9199 | 0.9199 | nan | nan | 0.9199 | 0.0 | nan | 0.9199 |
68
+ | 0.1623 | 18.18 | 200 | 0.2540 | 0.4679 | 0.9359 | 0.9359 | nan | nan | 0.9359 | 0.0 | nan | 0.9359 |
69
+ | 0.1724 | 20.0 | 220 | 0.2567 | 0.4702 | 0.9404 | 0.9404 | nan | nan | 0.9404 | 0.0 | nan | 0.9404 |
70
+ | 0.1503 | 21.82 | 240 | 0.1967 | 0.4459 | 0.8919 | 0.8919 | nan | nan | 0.8919 | 0.0 | nan | 0.8919 |
71
+ | 0.1189 | 23.64 | 260 | 0.2153 | 0.4617 | 0.9234 | 0.9234 | nan | nan | 0.9234 | 0.0 | nan | 0.9234 |
72
+ | 0.1007 | 25.45 | 280 | 0.1695 | 0.4324 | 0.8648 | 0.8648 | nan | nan | 0.8648 | 0.0 | nan | 0.8648 |
73
+ | 0.0921 | 27.27 | 300 | 0.1540 | 0.4346 | 0.8691 | 0.8691 | nan | nan | 0.8691 | 0.0 | nan | 0.8691 |
74
+ | 0.0897 | 29.09 | 320 | 0.1657 | 0.4538 | 0.9077 | 0.9077 | nan | nan | 0.9077 | 0.0 | nan | 0.9077 |
75
+ | 0.0814 | 30.91 | 340 | 0.1519 | 0.4374 | 0.8749 | 0.8749 | nan | nan | 0.8749 | 0.0 | nan | 0.8749 |
76
+ | 0.0729 | 32.73 | 360 | 0.1444 | 0.4430 | 0.8861 | 0.8861 | nan | nan | 0.8861 | 0.0 | nan | 0.8861 |
77
+ | 0.0892 | 34.55 | 380 | 0.1283 | 0.4106 | 0.8213 | 0.8213 | nan | nan | 0.8213 | 0.0 | nan | 0.8213 |
78
+ | 0.07 | 36.36 | 400 | 0.1442 | 0.4374 | 0.8748 | 0.8748 | nan | nan | 0.8748 | 0.0 | nan | 0.8748 |
79
+ | 0.0619 | 38.18 | 420 | 0.1391 | 0.4296 | 0.8592 | 0.8592 | nan | nan | 0.8592 | 0.0 | nan | 0.8592 |
80
+ | 0.0563 | 40.0 | 440 | 0.1283 | 0.4402 | 0.8804 | 0.8804 | nan | nan | 0.8804 | 0.0 | nan | 0.8804 |
81
+ | 0.0582 | 41.82 | 460 | 0.1275 | 0.4297 | 0.8595 | 0.8595 | nan | nan | 0.8595 | 0.0 | nan | 0.8595 |
82
+ | 0.0575 | 43.64 | 480 | 0.1341 | 0.4362 | 0.8724 | 0.8724 | nan | nan | 0.8724 | 0.0 | nan | 0.8724 |
83
+ | 0.068 | 45.45 | 500 | 0.1132 | 0.4181 | 0.8362 | 0.8362 | nan | nan | 0.8362 | 0.0 | nan | 0.8362 |
84
+ | 0.0595 | 47.27 | 520 | 0.1285 | 0.4316 | 0.8632 | 0.8632 | nan | nan | 0.8632 | 0.0 | nan | 0.8632 |
85
+ | 0.0558 | 49.09 | 540 | 0.1291 | 0.4322 | 0.8644 | 0.8644 | nan | nan | 0.8644 | 0.0 | nan | 0.8644 |
86
 
87
 
88
  ### Framework versions