HorcruxNo13
commited on
Commit
·
3e62892
1
Parent(s):
b587b34
update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: segformer-b0-finetuned-segments-toolwear
|
@@ -12,18 +14,16 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# segformer-b0-finetuned-segments-toolwear
|
14 |
|
15 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
-
- Accuracy Tool:
|
23 |
-
- Accuracy Wear: 0.7796
|
24 |
- Iou Unlabeled: 0.0
|
25 |
-
- Iou Tool:
|
26 |
-
- Iou Wear: 0.7796
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -52,35 +52,35 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool |
|
56 |
-
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: segformer-b0-finetuned-segments-toolwear
|
|
|
14 |
|
15 |
# segformer-b0-finetuned-segments-toolwear
|
16 |
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_segmentsai_tools dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0480
|
20 |
+
- Mean Iou: 0.4892
|
21 |
+
- Mean Accuracy: 0.9785
|
22 |
+
- Overall Accuracy: 0.9785
|
23 |
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Tool: 0.9785
|
|
|
25 |
- Iou Unlabeled: 0.0
|
26 |
+
- Iou Tool: 0.9785
|
|
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Iou Unlabeled | Iou Tool |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
|
57 |
+
| 0.257 | 1.82 | 20 | 0.4274 | 0.4894 | 0.9788 | 0.9788 | nan | 0.9788 | 0.0 | 0.9788 |
|
58 |
+
| 0.14 | 3.64 | 40 | 0.1857 | 0.4878 | 0.9756 | 0.9756 | nan | 0.9756 | 0.0 | 0.9756 |
|
59 |
+
| 0.0945 | 5.45 | 60 | 0.1383 | 0.4877 | 0.9754 | 0.9754 | nan | 0.9754 | 0.0 | 0.9754 |
|
60 |
+
| 0.0766 | 7.27 | 80 | 0.1041 | 0.4907 | 0.9813 | 0.9813 | nan | 0.9813 | 0.0 | 0.9813 |
|
61 |
+
| 0.0752 | 9.09 | 100 | 0.1055 | 0.4836 | 0.9672 | 0.9672 | nan | 0.9672 | 0.0 | 0.9672 |
|
62 |
+
| 0.0433 | 10.91 | 120 | 0.1180 | 0.4659 | 0.9318 | 0.9318 | nan | 0.9318 | 0.0 | 0.9318 |
|
63 |
+
| 0.0358 | 12.73 | 140 | 0.0857 | 0.4831 | 0.9662 | 0.9662 | nan | 0.9662 | 0.0 | 0.9662 |
|
64 |
+
| 0.0357 | 14.55 | 160 | 0.0765 | 0.4865 | 0.9730 | 0.9730 | nan | 0.9730 | 0.0 | 0.9730 |
|
65 |
+
| 0.0401 | 16.36 | 180 | 0.0898 | 0.4793 | 0.9587 | 0.9587 | nan | 0.9587 | 0.0 | 0.9587 |
|
66 |
+
| 0.042 | 18.18 | 200 | 0.0755 | 0.4828 | 0.9655 | 0.9655 | nan | 0.9655 | 0.0 | 0.9655 |
|
67 |
+
| 0.0366 | 20.0 | 220 | 0.0744 | 0.4818 | 0.9635 | 0.9635 | nan | 0.9635 | 0.0 | 0.9635 |
|
68 |
+
| 0.0213 | 21.82 | 240 | 0.0708 | 0.4828 | 0.9656 | 0.9656 | nan | 0.9656 | 0.0 | 0.9656 |
|
69 |
+
| 0.0284 | 23.64 | 260 | 0.0684 | 0.4851 | 0.9701 | 0.9701 | nan | 0.9701 | 0.0 | 0.9701 |
|
70 |
+
| 0.0237 | 25.45 | 280 | 0.0625 | 0.4879 | 0.9757 | 0.9757 | nan | 0.9757 | 0.0 | 0.9757 |
|
71 |
+
| 0.0189 | 27.27 | 300 | 0.0603 | 0.4858 | 0.9716 | 0.9716 | nan | 0.9716 | 0.0 | 0.9716 |
|
72 |
+
| 0.026 | 29.09 | 320 | 0.0632 | 0.4860 | 0.9719 | 0.9719 | nan | 0.9719 | 0.0 | 0.9719 |
|
73 |
+
| 0.0231 | 30.91 | 340 | 0.0662 | 0.4840 | 0.9680 | 0.9680 | nan | 0.9680 | 0.0 | 0.9680 |
|
74 |
+
| 0.0218 | 32.73 | 360 | 0.0563 | 0.4855 | 0.9710 | 0.9710 | nan | 0.9710 | 0.0 | 0.9710 |
|
75 |
+
| 0.0253 | 34.55 | 380 | 0.0627 | 0.4848 | 0.9697 | 0.9697 | nan | 0.9697 | 0.0 | 0.9697 |
|
76 |
+
| 0.0142 | 36.36 | 400 | 0.0621 | 0.4844 | 0.9689 | 0.9689 | nan | 0.9689 | 0.0 | 0.9689 |
|
77 |
+
| 0.0214 | 38.18 | 420 | 0.0668 | 0.4820 | 0.9639 | 0.9639 | nan | 0.9639 | 0.0 | 0.9639 |
|
78 |
+
| 0.0166 | 40.0 | 440 | 0.0555 | 0.4858 | 0.9716 | 0.9716 | nan | 0.9716 | 0.0 | 0.9716 |
|
79 |
+
| 0.0185 | 41.82 | 460 | 0.0545 | 0.4859 | 0.9718 | 0.9718 | nan | 0.9718 | 0.0 | 0.9718 |
|
80 |
+
| 0.0218 | 43.64 | 480 | 0.0500 | 0.4876 | 0.9753 | 0.9753 | nan | 0.9753 | 0.0 | 0.9753 |
|
81 |
+
| 0.0184 | 45.45 | 500 | 0.0481 | 0.4892 | 0.9784 | 0.9784 | nan | 0.9784 | 0.0 | 0.9784 |
|
82 |
+
| 0.018 | 47.27 | 520 | 0.0487 | 0.4893 | 0.9786 | 0.9786 | nan | 0.9786 | 0.0 | 0.9786 |
|
83 |
+
| 0.0254 | 49.09 | 540 | 0.0480 | 0.4892 | 0.9785 | 0.9785 | nan | 0.9785 | 0.0 | 0.9785 |
|
84 |
|
85 |
|
86 |
### Framework versions
|