HorcruxNo13
commited on
Commit
•
152b89c
1
Parent(s):
808c78a
update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
|
|
|
|
4 |
- generated_from_trainer
|
5 |
model-index:
|
6 |
- name: segformer-b0-finetuned-segments-toolwear
|
@@ -12,18 +14,16 @@ should probably proofread and complete it, then remove this comment. -->
|
|
12 |
|
13 |
# segformer-b0-finetuned-segments-toolwear
|
14 |
|
15 |
-
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on
|
16 |
It achieves the following results on the evaluation set:
|
17 |
-
- Loss: 0.
|
18 |
-
- Mean Iou: 0.
|
19 |
-
- Mean Accuracy: 0.
|
20 |
-
- Overall Accuracy: 0.
|
21 |
- Accuracy Unlabeled: nan
|
22 |
-
- Accuracy Tool:
|
23 |
-
- Accuracy Wear: 0.7482
|
24 |
- Iou Unlabeled: 0.0
|
25 |
-
- Iou Tool:
|
26 |
-
- Iou Wear: 0.7482
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -52,35 +52,35 @@ The following hyperparameters were used during training:
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
-
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool |
|
56 |
-
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
|
85 |
|
86 |
### Framework versions
|
|
|
1 |
---
|
2 |
license: other
|
3 |
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
- generated_from_trainer
|
7 |
model-index:
|
8 |
- name: segformer-b0-finetuned-segments-toolwear
|
|
|
14 |
|
15 |
# segformer-b0-finetuned-segments-toolwear
|
16 |
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the HorcruxNo13/toolwear_segmentsai_tools dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0332
|
20 |
+
- Mean Iou: 0.4969
|
21 |
+
- Mean Accuracy: 0.9938
|
22 |
+
- Overall Accuracy: 0.9938
|
23 |
- Accuracy Unlabeled: nan
|
24 |
+
- Accuracy Tool: 0.9938
|
|
|
25 |
- Iou Unlabeled: 0.0
|
26 |
+
- Iou Tool: 0.9938
|
|
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Tool | Iou Unlabeled | Iou Tool |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
|
57 |
+
| 0.1957 | 1.82 | 20 | 0.3708 | 0.4995 | 0.9991 | 0.9991 | nan | 0.9991 | 0.0 | 0.9991 |
|
58 |
+
| 0.1896 | 3.64 | 40 | 0.1768 | 0.4985 | 0.9970 | 0.9970 | nan | 0.9970 | 0.0 | 0.9970 |
|
59 |
+
| 0.1022 | 5.45 | 60 | 0.0996 | 0.4966 | 0.9933 | 0.9933 | nan | 0.9933 | 0.0 | 0.9933 |
|
60 |
+
| 0.0855 | 7.27 | 80 | 0.0863 | 0.4767 | 0.9535 | 0.9535 | nan | 0.9535 | 0.0 | 0.9535 |
|
61 |
+
| 0.1223 | 9.09 | 100 | 0.0677 | 0.4964 | 0.9927 | 0.9927 | nan | 0.9927 | 0.0 | 0.9927 |
|
62 |
+
| 0.0791 | 10.91 | 120 | 0.0583 | 0.4948 | 0.9896 | 0.9896 | nan | 0.9896 | 0.0 | 0.9896 |
|
63 |
+
| 0.0521 | 12.73 | 140 | 0.0500 | 0.4938 | 0.9876 | 0.9876 | nan | 0.9876 | 0.0 | 0.9876 |
|
64 |
+
| 0.0397 | 14.55 | 160 | 0.0443 | 0.4958 | 0.9916 | 0.9916 | nan | 0.9916 | 0.0 | 0.9916 |
|
65 |
+
| 0.0283 | 16.36 | 180 | 0.0594 | 0.4972 | 0.9943 | 0.9943 | nan | 0.9943 | 0.0 | 0.9943 |
|
66 |
+
| 0.0378 | 18.18 | 200 | 0.0485 | 0.4987 | 0.9974 | 0.9974 | nan | 0.9974 | 0.0 | 0.9974 |
|
67 |
+
| 0.0347 | 20.0 | 220 | 0.0382 | 0.4971 | 0.9941 | 0.9941 | nan | 0.9941 | 0.0 | 0.9941 |
|
68 |
+
| 0.0245 | 21.82 | 240 | 0.0346 | 0.4966 | 0.9932 | 0.9932 | nan | 0.9932 | 0.0 | 0.9932 |
|
69 |
+
| 0.0425 | 23.64 | 260 | 0.0393 | 0.4961 | 0.9921 | 0.9921 | nan | 0.9921 | 0.0 | 0.9921 |
|
70 |
+
| 0.0293 | 25.45 | 280 | 0.0336 | 0.4973 | 0.9946 | 0.9946 | nan | 0.9946 | 0.0 | 0.9946 |
|
71 |
+
| 0.0247 | 27.27 | 300 | 0.0368 | 0.4972 | 0.9944 | 0.9944 | nan | 0.9944 | 0.0 | 0.9944 |
|
72 |
+
| 0.0287 | 29.09 | 320 | 0.0317 | 0.4958 | 0.9915 | 0.9915 | nan | 0.9915 | 0.0 | 0.9915 |
|
73 |
+
| 0.0254 | 30.91 | 340 | 0.0408 | 0.4966 | 0.9932 | 0.9932 | nan | 0.9932 | 0.0 | 0.9932 |
|
74 |
+
| 0.0347 | 32.73 | 360 | 0.0291 | 0.4965 | 0.9930 | 0.9930 | nan | 0.9930 | 0.0 | 0.9930 |
|
75 |
+
| 0.0174 | 34.55 | 380 | 0.0361 | 0.4978 | 0.9955 | 0.9955 | nan | 0.9955 | 0.0 | 0.9955 |
|
76 |
+
| 0.0191 | 36.36 | 400 | 0.0417 | 0.4972 | 0.9944 | 0.9944 | nan | 0.9944 | 0.0 | 0.9944 |
|
77 |
+
| 0.0234 | 38.18 | 420 | 0.0373 | 0.4974 | 0.9947 | 0.9947 | nan | 0.9947 | 0.0 | 0.9947 |
|
78 |
+
| 0.0306 | 40.0 | 440 | 0.0370 | 0.4969 | 0.9938 | 0.9938 | nan | 0.9938 | 0.0 | 0.9938 |
|
79 |
+
| 0.0178 | 41.82 | 460 | 0.0407 | 0.4973 | 0.9946 | 0.9946 | nan | 0.9946 | 0.0 | 0.9946 |
|
80 |
+
| 0.0152 | 43.64 | 480 | 0.0323 | 0.4968 | 0.9935 | 0.9935 | nan | 0.9935 | 0.0 | 0.9935 |
|
81 |
+
| 0.0181 | 45.45 | 500 | 0.0346 | 0.4974 | 0.9947 | 0.9947 | nan | 0.9947 | 0.0 | 0.9947 |
|
82 |
+
| 0.0155 | 47.27 | 520 | 0.0338 | 0.4971 | 0.9942 | 0.9942 | nan | 0.9942 | 0.0 | 0.9942 |
|
83 |
+
| 0.0223 | 49.09 | 540 | 0.0332 | 0.4969 | 0.9938 | 0.9938 | nan | 0.9938 | 0.0 | 0.9938 |
|
84 |
|
85 |
|
86 |
### Framework versions
|