--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: beit-base-patch16-224 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8966666666666666 - name: Precision type: precision value: 0.891224605606628 - name: Recall type: recall value: 0.8966666666666666 --- # beit-base-patch16-224 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co./microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2426 - Accuracy: 0.8967 - Precision: 0.8912 - Recall: 0.8967 - F1 Score: 0.8935 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.4160 | 0.8667 | 0.8037 | 0.8667 | 0.8160 | | No log | 2.0 | 8 | 0.4441 | 0.8375 | 0.7702 | 0.8375 | 0.7998 | | No log | 3.0 | 12 | 0.4451 | 0.8667 | 0.8559 | 0.8667 | 0.8605 | | 0.4959 | 4.0 | 16 | 0.3299 | 0.8792 | 0.8545 | 0.8792 | 0.8551 | | 0.4959 | 5.0 | 20 | 0.3813 | 0.8458 | 0.8776 | 0.8458 | 0.8580 | | 0.4959 | 6.0 | 24 | 0.2802 | 0.8958 | 0.8851 | 0.8958 | 0.8881 | | 0.4959 | 7.0 | 28 | 0.2991 | 0.8875 | 0.8830 | 0.8875 | 0.8850 | | 0.3696 | 8.0 | 32 | 0.2565 | 0.8917 | 0.8792 | 0.8917 | 0.8825 | | 0.3696 | 9.0 | 36 | 0.2582 | 0.9 | 0.8949 | 0.9 | 0.8970 | | 0.3696 | 10.0 | 40 | 0.2472 | 0.9 | 0.8927 | 0.9 | 0.8954 | | 0.3696 | 11.0 | 44 | 0.2463 | 0.9208 | 0.9179 | 0.9208 | 0.9191 | | 0.3299 | 12.0 | 48 | 0.2474 | 0.9167 | 0.9145 | 0.9167 | 0.9155 | | 0.3299 | 13.0 | 52 | 0.2826 | 0.8833 | 0.8971 | 0.8833 | 0.8889 | | 0.3299 | 14.0 | 56 | 0.2720 | 0.8958 | 0.9035 | 0.8958 | 0.8991 | | 0.3036 | 15.0 | 60 | 0.2629 | 0.9 | 0.9059 | 0.9 | 0.9025 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3