--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall model-index: - name: beit-base-patch16-224 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7933333333333333 - name: Precision type: precision value: 0.7853286177424108 - name: Recall type: recall value: 0.7933333333333333 --- # beit-base-patch16-224 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co./microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8531 - Accuracy: 0.7933 - Precision: 0.7853 - Recall: 0.7933 - F1 Score: 0.7662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | No log | 1.0 | 4 | 0.5815 | 0.7292 | 0.6273 | 0.7292 | 0.6259 | | No log | 2.0 | 8 | 0.5493 | 0.7333 | 0.6901 | 0.7333 | 0.6863 | | No log | 3.0 | 12 | 0.5545 | 0.7667 | 0.7575 | 0.7667 | 0.7147 | | 0.5698 | 4.0 | 16 | 0.5706 | 0.7667 | 0.7503 | 0.7667 | 0.7221 | | 0.5698 | 5.0 | 20 | 0.5800 | 0.7667 | 0.7575 | 0.7667 | 0.7147 | | 0.5698 | 6.0 | 24 | 0.5929 | 0.7833 | 0.7772 | 0.7833 | 0.7451 | | 0.5698 | 7.0 | 28 | 0.5783 | 0.7833 | 0.7677 | 0.7833 | 0.7672 | | 0.2938 | 8.0 | 32 | 0.5665 | 0.7875 | 0.7793 | 0.7875 | 0.7821 | | 0.2938 | 9.0 | 36 | 0.7751 | 0.7875 | 0.7770 | 0.7875 | 0.7571 | | 0.2938 | 10.0 | 40 | 0.7088 | 0.7917 | 0.7816 | 0.7917 | 0.7843 | | 0.2938 | 11.0 | 44 | 0.8799 | 0.8042 | 0.7972 | 0.8042 | 0.7808 | | 0.0834 | 12.0 | 48 | 0.8367 | 0.7875 | 0.7793 | 0.7875 | 0.7821 | | 0.0834 | 13.0 | 52 | 0.9200 | 0.7958 | 0.7834 | 0.7958 | 0.7758 | | 0.0834 | 14.0 | 56 | 0.8821 | 0.8 | 0.7879 | 0.8 | 0.7869 | | 0.0358 | 15.0 | 60 | 0.8674 | 0.7875 | 0.7753 | 0.7875 | 0.7777 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3