Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fa
|
3 |
+
license: apache-2.0
|
4 |
+
---
|
5 |
+
|
6 |
+
# ParsBERT (v2.0)
|
7 |
+
A Transformer-based Model for Persian Language Understanding
|
8 |
+
|
9 |
+
We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes!
|
10 |
+
Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models.
|
11 |
+
|
12 |
+
|
13 |
+
## Persian Sentiment [Digikala, SnappFood, DeepSentiPers]
|
14 |
+
|
15 |
+
It aims to classify text, such as comments, based on their emotional bias. We tested three well-known datasets for this task: `Digikala` user comments, `SnappFood` user comments, and `DeepSentiPers` in two binary-form and multi-form types.
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
### SnappFood
|
20 |
+
|
21 |
+
[Snappfood](https://snappfood.ir/) (an online food delivery company) user comments containing 70,000 comments with two labels (i.e. polarity classification):
|
22 |
+
|
23 |
+
1. Happy
|
24 |
+
2. Sad
|
25 |
+
|
26 |
+
| Label | # |
|
27 |
+
|:--------:|:-----:|
|
28 |
+
| Negative | 35000 |
|
29 |
+
| Positive | 35000 |
|
30 |
+
|
31 |
+
**Download**
|
32 |
+
You can download the dataset from [here](https://drive.google.com/uc?id=15J4zPN1BD7Q_ZIQ39VeFquwSoW8qTxgu)
|
33 |
+
|
34 |
+
## Results
|
35 |
+
|
36 |
+
The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures.
|
37 |
+
|
38 |
+
| Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | DeepSentiPers |
|
39 |
+
|:------------------------:|:-----------:|:-----------:|:-----:|:-------------:|
|
40 |
+
| SnappFood User Comments | 87.98 | 88.12* | 87.87 | - |
|
41 |
+
|
42 |
+
|
43 |
+
## How to use :hugs:
|
44 |
+
|
45 |
+
| Task | Notebook |
|
46 |
+
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
47 |
+
| Sentiment Analysis | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert/blob/master/notebooks/Taaghche_Sentiment_Analysis.ipynb) |
|
48 |
+
|
49 |
+
|
50 |
+
### BibTeX entry and citation info
|
51 |
+
|
52 |
+
Please cite in publications as the following:
|
53 |
+
|
54 |
+
```bibtex
|
55 |
+
@article{ParsBERT,
|
56 |
+
title={ParsBERT: Transformer-based Model for Persian Language Understanding},
|
57 |
+
author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri},
|
58 |
+
journal={ArXiv},
|
59 |
+
year={2020},
|
60 |
+
volume={abs/2005.12515}
|
61 |
+
}
|
62 |
+
```
|
63 |
+
|
64 |
+
## Questions?
|
65 |
+
Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
|